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The Robust Clustering with Reduction
Dimension

Dyah E. Herwindiati

Abstract—A clustering is process to identify a homogeneous This paper talks deal with a robust clustering pescfor

groups of object called as cluster. Clusteringrie mteresting topic
on data mining. A group or class behaves similahgracteristics.
This paper discusses a robust clustering procestata images with
two reduction dimension approaches; i.e. the twmedisional
principal component analysis (2DPCA) and princigaimponent
analysis (PCA). A standard approach to overcomg phoblem is
dimension reduction, which transforms a high-dinemal data into
a lower-dimensional space with limited loss of mfiation. One of
the most common forms of dimensionality reductisrihie principal
components analysis (PCA). The 2DPCA is often dadlevariant of
principal component (PCA), the image matrices vebrectly treated
as 2D matrices; they do not need to be transforimieda vector so
that the covariance matrix of image can be congcdudirectly using
the original image matrices. The decomposed clalssievariance
matrix is very sensitive to outlying observatiofi$ie objective of
paper is to compare the performance of robust nmng vector
variance (MVV) in the two dimensional projection RG2DPCA)
and the PCA for clustering on an arbitrary datagenahen outliers
are hiden in the data set. The simulation aspefctsbustness and
the illustration of clustering images are diseas$n the end of
paper

Keywords—Breakdown point, Consistency, 2DPCA, PCA,
Outlier, VectorVariance

|. INTRODUCTION

data images with two reduction dimension approadhesthe
two dimensional principal component analysis (2DP@Ad
principal component analysis (PCA). One of the nocoshmon
forms of dimensionality reduction is the princigalmponents
analysis (PCA), see Jolife [5]. A principal compahanalysis
focused on reducing the dimensionality of a datanserder to
explain as much information as possible. The finshcipal
component is the combination of variables that &gl the
greatest amount of variation. The second prinaipahponent
is defined as the next largest amount of variatiom is
independent to the first principal component. T8tep will be
continued for the entire principal components cgpomnding to
the eigenvectors of covariance matrix sample.
disadvantage of PCA is the elaborate computation.

Yang et.al [6] proposed the application of two disienal
Principal Component (2DPCA) for reducing of compiotaal
time of standard PCA on face recognition. The 2DPGA
often called a variant of principal component (PCH the
2DPCA, the image matrices were directly treated 2&s
matrices; the images do not need to be transformied a
vector so that the covariance matrix of image can
constructed directly using the original image ntasi The
2DPCA has two important benefits over PCA, it isieato

LUSTERINGis one common technique for statistical dat@valuate the covariance matrix and it has the tess for

analysis used in many fields. A clustering is pescé&
identify a homogeneous groups of object calledlaster. A
group or class behaves similarly characteristite @lustering
algoritms are generally classified into hierachieald non
hierarchical algorithms. This paper discusses rolbusn
hierarchical clustering process for data image$ wétluction
dimension. A cluster of image is built from robubstance;
which is measured from central location observation

determining the eigenvectors.

The decomposed information variation of classie@A
and 2DPCA becomes pointless if outliers are pregerhe
data. The decomposed classical covariance matrixery
sensitive to outlying observations. The first comgat
consisting of the greatest variation is often pdstwavard the
anomalous observations.

Robust statistics a convinient modern way of sunsiray

Reduction dimension has been used widely in mangsult when outliers are hidden in the data setli@®Lus often

application involving high dimensional data,
application on image processing. The digital numtrevalue
of image pixels have loaded resemble charactethdmear
neighbour pixels. It means that the one of vargshlan be
written as a near linear combination of the otreables, and
the dispersion of data is close to singularity peob A
standard approach to overcome this problem is diifnan
reduction, which transforms a high-dimensional data a
lower-dimensional space with limited loss of infation.
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sucts adifficult to be identified through visual inspeatiavithout the

analytic tools. There are many different robusinestor of
location estimator. In this paper we discuss théuso
estimator of minimum vector variance (MVV). The etiive
of paper is to compare the performance of robusimizing
vector variance (MVV) in the two dimensional prdjea PCA
(2DPCA) and the PCA for clustering of the arbitratgta
image. Minimum vector variance (MVV) is the robustasure
in an attempt to determine the location estimatod a
covariance matrix based on a data subset
approximately an half data which give the minimuector
variance, see Herwindiati et. al [1]. The algorittoh two

methods and the clustering cases are comprehegnsivel

discussed. The aim of paper is to give the expiansitand
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comparison of robust minimizing vector variance (WjVin
the two dimensional projection PCA (2DPCA) and BEA
for clustering of the arbitrary data image

Il. THE ROBUST PRINCIPAL COMPONENT ANALYSIS
The main idea of principal component analysis (PGAD
reduce the dimensionality of data set consistingalsirge
number of interrelated variable, while retaining mach as
possible of variation in the data set, see Joifelh the image
processing, PCA is the statistical tegnique useulfind
pattern in data image of high dimension.

Suppose that the random vectoX of p components has

the classical covariance matr@which is a px p symmetric
and positive semi definite.

S S, §p
s=|% » %
St S22 7 S

Covariance matri§ has eigenvaluesh 24,2---24,20

and eigenvectol such thalt)'SU = L; where L is diagonal
matrix.

The principal components are uncorrelated Iinea5r
combinationsY whose variances are as large as possible. The

first principal component is given by, =U; X which has the

largest proportion of total variance. Tecnically, pacipal
component can be defined as a linear combination
optimally-weighted observed variable.

The proportion of total variance tHe principal component
k
is often explained by the ratio of the eigenvalugs = z/li .

The determination ofk is an important role to the PCA

analysis. A largerk gives a better fit in PCA, but a larg&r
has the larger redundancy of information. The regi@ent of

original variable p to the k principal component must be

considered as a goal in optimizing. The decompatzskical

covariance matrixS is very sensitive to outlying observations.estimator.

The k principal component becomes unreliable if outliers
present in the original variabfe. The k principal component

consisting of the largest proportion of total vada Sis often
pushed toward the outliers.

Regarding the fact, Huber et al [8] introduced & naethod
for robust principal component (ROBPCA). ROBPCAPGA
method combining two advantages of both projecparsuit
and robust covariance estimation. The robust egtimes
computed by the MCD ideas of covariance matrix.eBlasn
our experience in computations, ROBPCA is an dffecind
efficient method. Herwindiati and Isa [2] propogbé robust
principal component minimizing vector variance (MV
based on the good properties of ROBPCA.
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The MVV robust PCA is an impressive method for
interpreting the application of PCA, such as ttessification
and the clustering process. The algorithm of MVYust PCA
is composed with three stages generally listedlksAfs,

Stage 1. Start with a singular value decompositiérthe
mean centered data matrix

Stage 2. Estimate the location and covariance maitsing
MVV robust approach.

1. Let H,, be an

h:[n+k+1
2

arbitrary  subset containing

}data points. Compute the mean vector

X, and covariance matrixS, ~ of all observations

belonging taH ;. Then compute,

— = t - =
d’io\d (I) = (X' - XHo\d) $cl.m ( >'( - >&old)
forali=1,2, ... n
2. Sort these distances in increasing order,
3. Define H,,, from the order distanc# ,,=

{)zﬂ(l) ’ X”@) T ;("(h)}
4 CaIcuIate)?Hnew, S,  anddi (i).

If Tr(SﬁneW) =0, repeat steps 1 to 5 and. The process is

stopped IfTr (% _)=Tr(s2, ).
. Otherwise, the process is continued until kil iteration
or jf
()2 T( )2 T( )22 T( §)= T 5)

Stage 3. Do the clustring images using the MVV sbbu
squared Mahalanobis distance defined as,

dh2/|W ( Xi ’ :I:MVV) :( S(i - TMvv)I S/Ilvv( —X_ _TIVV) ; for all
i=1,2, .. ,nandT,, andS,, are the location and
covariance matrix given by that process

The Subseh in the first stage has the important role in the
Hubert et al [8] suggested to take

subseh = max{[an] J(n+ Ko+ 3 /2]} , where a is chosen

as any real value between 0.5 and K],, as a maximal

number of components that will be computed, however
Rousseeuw and van Driessen [10] stated that theesub

h:[n+k+1

} has the high breakdown point estimator.

Breakdown point is the smallest fraction of dataicivh
causes the value of estimator to be infinity whas talue of
all data in the fraction are changed to be infinRpusseeuw
and Leroy [9]. The good robust estimator must bghhi
breakdown point. The higher breakdown point estimat
means the more resistant estimator to agains thiamant
data.
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Two subsets; h = max{[an] [(n+ Kt /2]} and

| n+k+1],
" ‘[ 2 }
points as seen in the Figure 1 and Figure 2. Tligsees

ConsiderX,, X,,---

let V is an p dimensional unitary column vector, the idea of

, Xy is amx prandom image matrix,

are simulated to compare the breakdo . . ~ . .
imu P WIEDPCA is to project X ont&/ by linear transformation

Y=XV 1)

reveal the fact that the breakdown pointhgf is higher and pefine the image covariance matrix:

more stable than the one bf.

.
a0 o

2 BF = 514100

Breakdown Point (BP)

1] 10 0 a0 a0 0 60
Observation

Fig. 1 MVV Breakdown point usingh :{n *k +l}

2

Breakdown Point (BP)

‘.
A L

5

a 10 20 30 40 50 B0
Observation

Fig. 2 MVV Breakdown point usingh=0.75n

I1l. THE ROBUST TWO DIMENSION PRINCIPAL COMPONENT (
RoBUST2DPCA)

Su = E[(X -EX)" (X - Ex)thich is a px p non negative

definite matrix. The covariance matrix of projecfedture of
sample is defined as

S, =V'E[(X-EX)' (X-EX)[V=V'S, V  (2)
Suppose there aitimage matrice§ X}, i =1,2,-- N and
_ N
denote the average image)és%ZXi , then S, can be

i=1
evaluated by

s, =%§N1(xi—>"<)T(xi—x) 3)

i=1

In line with the PCA algorithm, to have a projeatio
direction of 2DPCA is done by reducing the dimenaidy of
a data set in order to explain as much informagispossible,

S, has the important rule of IettirkjOpt as the eigenvector of
S, corresponding to the largest eigenvalue. A sétooidrmal

projection directionsV,,V,,---,V,  are the orthonormal
eigenvector ofS, corresponding to thel largest eigenvalues,

opt

eV, =[\71 Ve, \ZJ . Projecting a matrix X ont¥, , is

Y, =XV, k=1,2,--,d 4)

Two dimensional Principal Component (2DPCA) was | this section author discusses the robust 2DPEAsing
proposed by Yang et. al [6]he method using the projection ihe measure of minimizing vector variance (MVV).eTHVV

technique is developed for the gray scale face gmtion.
Though the 2DPCA is often called as a variant afigipal

robust 2DPCA is primarily a robust approach whigsatibes
the variance covariance structure through a linear

component (PCA), the 2DPCA has two important bémefiyansiormation of the original variables. The tdgoe is a

over PCA. It is easier to evaluate the covarianeg&imand it
has the less time for determining the eigenvectbrsthe

2DPCA, the image matrices are directly treated & 2,

matrices; the images need not be transformed invtector so
that the covariance matrix of the image can be tcocted
directly using the original image matrices.

Observation N x, X, o 25
A
X,
Observation 2 T He = e S il
x
" e = Xy X T
X,
Observation 1 = = ¥ =
X]
Xm] XM _‘(’n‘ xv
ClasSl........cevvvvvvevnnnnns Clads

Fig. 3 The lllustration of k Clustering data Images
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useful device for representing a set of variablgsabmuch
smaller set of composite variables that accountrfach of the
ariance among the set of original variables. Thatad
reduction based on the classical approach beconretiable
if outliers are present in the data. The decompadaskical
covariance matrix is very sensitive to outlying ebstions.
The first component consisting of the greatestatem is
often pushed toward the anomalous observations.

The algorithm of MVV robust 2DPCA has no signifitan
difference with MVV robust PCA except for the crite
projection, Herwindiati [3]. SupposeX,, X,,---, X, IS a

mx prandom image matrix.
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Stage 1. Start with a construction the covarianegrix by
using theN original two dimensional (2D) matrices
Find the orthonormal eigenvectors correspondinghi®

dlargest eigenvalues S, Vopt:[\z,\z,~-~,\sz.

Projecting a matrix X onto V,, is

Y, =XV, k=1,2,-,d

Stage 2.Estimate the location and covariance matrix of

projected matrix X4

approach.
Hold

by using MVV robust

1. Let be an arbitrary subset containing

h:[%m} matrix data points. Compute the average

matrix as )_(Hc.d and covariance matrixS, =~ of all
belonging té,,. Then
Bpi=(X Xy, ), k=12, d

observations calculate

2. Computed (i)=D's;, D, foralli=1,2,.. N
whereD,, is defined as mean afi rows in eactk column
k=12;-,d;
3. Sort these distances in increasing order,
4. Define Hy, = { X, Koo+ Ko}
5. CalculateX,, , S, andd’ (i).
6. If Tr(ﬁm) =0, repeat steps 1 to 5.

If Tr(Sﬂnew) =Tr (Sﬂcm ) , the process is stopped.

Otherwise, the process is continued untilrttie iteration if
() 2Tr($)2Tr($) 22 Tr($) = Tr(S.,)

Stage 3.Cluster the matrix data based on
distance

diw (1) = Dy Sy, Dy foralli=1,2, ... N.

IV. THE ILUSTRATION OF CLUSTERING IMACESUSING MVV
RoBUSTPCAAND 2DPCA

A.The lllustration 1

A sample set included 97 grass images and 7 woadédm
are selected for experiment. Two two kinds of insapave
different color. The extraction of each pixel inetttolor
feature is represented as a point in a 3D RGB csparce .
Assume that we do not know the caracteristics wipga. Two
approaches of MVV robust reduction dimension aedufor
clustering process.
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Fig. 5 The Clustering of Grass and wood with MVVbRst 2DPCA
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Fig. 6 The Clustering of Grass and wood with MVViRest PCA

B.The lllustration 2

In this illustration author shows the classificatiof two
kinds of cities; that are cities having the higmsley and low
high of population. The images are captured frotelldz. We
assume that the dense roof means the dense populétie
have 55 images of the high density and 4 imagesowf
density
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Fig. 7 Thecities having high and low density of population
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Fig. 8 The Clustering Cities with MVV Robust 2DPCA
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Fig. 9 The Clustering Cities with MVV Robust PCA

Two illustrations tell us that the two robust approaches; i.e.
MVV Robust PCA and MVV Robust 2DPCA; have the good
performance for clustering process of images. The approaches
can separate clearly two classes having different
characteristics.

V. THE COMPUTATION TIME OF MVV RoBuUST PCA AND
2DPCA

The 2DPCA is often called as a variant of principal
component (PCA). To distinguish PCA from 2DPCA, al of
the 2D data must be previously transformed into 1D vector
before they are processed by PCA approach. The
transformation leads to a high dimensional vector space. The
2DPCA has the less time for determining the eigenvectors, the
image matrices are directly treated as 2D matrices and the
covariance matrix can be constructed directly using the
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original image matrices, see Yang et a [6].The efficiency or
running time of an algorithm is related the length time or the
number of steps. In this section authors are going to compare
the computational time of MVV robust 2DPCA and MVV
robust PCA. To generate n random matrices of 40x40, and
defined them as X, X,,---, X, for experiment. The next step

is to calculate the average of computational time of MVV
robust PCA and MVV robust 2DPCA for 100 experiment .
We repeat theactionsusing n=20, 30, 40,...,100 .

The computation time of two methods is presented by
Figure 9. The graphic pattern of The MVV robust 2DPCA is
more stable than the MVV robust PCA graph. The difference
computation time of two methods is more biger for larger of
datasize.

)
i)
=1

n
=}
a

The MVV Robust PCA y
r

Computation Time {Second)
E g

50

0 | . . . . . . .
20 30 40 50 B0 70 80 a0 100 110
MNumber of Matrix

Fig. 10 The Computation Time of MVV robust 2DPCA and MVV
robust PCA

VI. THE CONSISTENCY ESTIMATOR

The section discusses the consistency of estimator of the
MVV robust PCA and the MVV robust 2DPCA. The
Estimation is the process by which sample data are used to
indicate the value of an unknown quantity in a population. An
estimator is any quantity calculated from the sample data
which is used to approximate the unknown parameters. The
one desirable property of estimator is the value of an
estimator is closed to the value of the true parameter. An
estimator for a parameter is consistent if the estimator
converges in probability to the true value of the parameter,
Kendal and Stuart [11]. Consider an estimatort,, computed

from a sample of n values, will be said to be a consistent
estimator if thereissome N  suchthat the probability that

®)
is greater than (1-7)for aln>N. In the notation of the
probability theory,
P{lt,-6| <&} >1-n
for any positive £ and /7 however small.

The sample estimator should have a high probability of
being close to the population value for large sample size. The
formulate (5) means that the distributions of the estimators
become more and more concentrated near the true value of the

t,-6<e

n>N

(6)
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parameter being estimated, so that the probabditythe
estimator being arbitrarily close # converges to one.The
estimator of MVV robust PCA and the MVV robust 2D&C
are consistent estmator. To prove the starementdavénvo
experiments with 100 replication of an each expenmFor
the first experiment, we generate the multivariatrmal
N, (%) ,p=25, and 7=0; X =1,and n=200. The
contaminant data present in a data set beginningah®o
gradually to be higher; i.e. 2%; 3%; 4% and soilbd@ %.

The following figure is the result of simulationptiment
for consistency. The figure illustrates that thelability of
MWV robust PCA and MVV robust 2DPCA converge t®.0.
Moreover, we see that the line of robust PCA apph; the
blue line; is more stable than robust 2DPA apprptehgreen
line. It means that the MVV robust PCA is morensigtent
against of contaminant.

Probability

02  Red - Classics Approach
Green - MV 2DPCA

01 Blue : MVV RPCA

1 2 3 4 9 10

5 6 7 8
Percentage of Contaminant

Fig. 11 The Comparison of Concistency of ClassgV Robust
PCA and MVV Robust 2DPCA estimator

VII. CONCLUSION

(71
(8]

9]

[10]

[11]

The MVV Robust PCA and MVV Robust 2DPCA can be

considered as measure for clustering data images.good
properties of robust can reduce the anomolous imagene
times coming from human error or different  seftin
instrument when the images are captured. The MDPQA
is more efficient computation than the time of M\Rbbust
PCA. The simulation experiments of consistent emstiim
suggestions that the MVV Robust PCA is better peréoce
of clustering than the MVV 2DPCA performance
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