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Automated Object Recognition in Retail Stores
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Abstract—Automated product recognition in retail stores is an
important real-world application in the domain of Computer Vision
and Pattern Recognition. In this paper, we consider the problem of
automatically identifying the classes of the products placed on racks
in retail stores from an image of the rack and information about
the query/product images. We improve upon the existing approaches
in terms of effectiveness and memory requirement by developing a
two-stage object detection and recognition pipeline comprising of a
Faster-RCNN-based object localizer that detects the object regions in
the rack image and a ResNet-18-based image encoder that classifies
the detected regions into the appropriate classes. Each of the models
is fine-tuned using appropriate data sets for better prediction and
data augmentation is performed on each query image to prepare an
extensive gallery set for fine-tuning the ResNet-18-based product
recognition model. This encoder is trained using a triplet loss
function following the strategy of online-hard-negative-mining for
improved prediction. The proposed models are lightweight and
can be connected in an end-to-end manner during deployment to
automatically identify each product object placed in a rack image.
Extensive experiments using Grozi-32k and GP-180 data sets verify
the effectiveness of the proposed model.

Keywords—Retail stores, Faster-RCNN, object localization,
ResNet-18, triplet loss, data augmentation, product recognition.

I. INTRODUCTION

IN this paper, we propose a Deep Learning-based solution to

the problem of identifying products on racks in retail stores

from an image of the rack and a database of query/product

images that may be placed on the rack. The problem can be

explained using Figs. 1 (a)-(d). With reference to the figure,

there exists a set of query/product images (Fig. 1 (b)) and

multiple instances of each of these may be placed at different

positions on the rack. Our Deep Learning model will take as

input the original rack image (Fig. 1 (a)) and output the same

rack image with detected and identified product instances.

Fig. 1 (c) shows the identified query objects with color codes

specified in Fig. 1 (d). In real-life situations, there will be

several such query images and large rack images due to which

there is a need for the development of automated product

recognition algorithms in retail stores to assist customers to

find the right product.

There are several challenges associated with the problem as

given in [1, 2]. Usually, only a single query/reference image

per product class is available which is insufficient to train
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Fig. 1 (a) Sample Rack Image, (b) Query Images, (c) Rank Image with
Detected Product Classes, (d) Color Codes for the Query images

a Deep Neural Network model. Also, the appearance of the

reference image may differ significantly from the rack images

in terms of orientation, illumination, resolution, reflection, etc.

Moreover, variants of the same product with minor visual cues

are likely to pose difficulty in the correct identification of the

actual product class.

Research work to date have tried to address this issue and

reduce human intervention, and our work is an improvement

to that proposed by Tonioni et al. in [3] that also follows

a two-stage pipeline involving Deep Neural Networks for

object localization and recognition. Specifically, we attempt

to improve the effectiveness of the YOLO-based product

localization model used in [3] by employing a Faster-RCNN

with a Feature Pyramid Network to capture multi-scale

features for improved localization. For object recognition also,

we use a lightweight ResNet-18-based product recognition

model instead of the larger VGG-16 model as considered

in [3]. The underlying architecture of our proposed model

is lightweight and it is expected to perform more accurately

due to the use of multi-scale features for product localization

as compared to that of [3], which makes it suitable for

deployment on edge devices with less amount of memory.

The main contributions of this paper can be summarized as

follows:

• In this article, a two-stage Deep Learning-based pipeline

for product recognition in retail settings is proposed

which is lightweight and can be conveniently integrated

with edge devices.

• We avoid template matching-based object detection

as used by most existing techniques and employ

multi-scale Deep Convolutional Networks for the same

374International Scholarly and Scientific Research & Innovation 17(6) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
6,

 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
13

6.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:17, No:6, 2023

task which makes the prediction accurate with a fast

response time. This scheme is also capable of effectively

identifying blank regions on the rack which the template

matching-based approaches fail to handle properly.

• We improve upon the work in [3] in terms of employing a

more effective network that extracts multi-scale features

for product localization and also using a much lighter

ResNet-18 model for product recognition.

• We conduct extensive experiments and perform a

comparative study with state-of-the-art approaches to

evaluate the effectiveness of the proposed approach.

II. RELATED WORK

Santra et al. have been working on several challenges

in this domain [4–6]. In [4], an end-to-end annotation-free

mechanism for product detection on racks is proposed. It is

a multi-stage exemplar-driven approach in which the relative

scale of the rack images with respect to the available product

templates is estimated in the first stage. In the second stage,

potential object regions are determined and refined using

greedy Non-Max-Suppression (NMS). Finally, a Convolutional

Neural Network (CNN) is used to perform the classification

using the extracted regions to identify the product classes. In

[5], the use of greedy NMS in the task of detecting object

locations in rack images is analyzed in depth. In this work, the

authors argue that the greedy NMS discards bounding boxes

with superior geometric placement due to the overlapping

of other boxes with higher confidence scores and propose

a graph-based NMS to compute the potential confidence

scores. In another work [6], fine-grained classification of

product instances is done by extracting unique local patches

around key points within an image and encoding these using

Convolutional Long-Short-Term Memory (LSTM) network.

George et al. [7] proposed a per-exemplar multi-label

image classification and localization approach by establishing

a locality constraint linear coding [8] model using dense

SIFT features of the product images. Further, a discriminative

Random Forest is trained followed by a multi-class ranking

of products to carry out the recognition task. Wang et

al. [9] proposed a destruction followed by a construction

method guided by a self-attention mechanism for end-to-end

fine-grained classification tasks. Osokin et al. [10] employed

a one-stage hybrid model to achieve the tasks of localization

and recognition jointly. First, the local features are extracted

from both the input and class images using a ResNet

following which dense correlation scores between the two are

computed. Next, the feature maps are semantically aligned

through a trained geometric transformation model to predict

the bounding boxes before finally computing the recognition

scores.

In the task of planogram compliance, Saran et al. [11]

presented a visual analysis framework and applied the

Hausdorff metric to compute the occupancy of product

shelves. Here, the authors describe a robust product counting

algorithm using row detection methods with texture and

color-based features. In another work, Ray et al. [12] proposed

a two-layer hypothesis and verification model in which the

model first predicts a set of candidate items at a certain

position of the rack, and next the above hypothesis is verified

by a graph-based algorithm. The proposal about candidate

items is made through a combination of correlation-based

and ad-hoc SURF [13] schemes. Liu et al. [14] proposed

an unsupervised recurrent pattern mining strategy with a

graph-based matching algorithm for planogram compliance by

adopting a divide-and-conquer policy independent of product

templates. In [15], the authors proposed a two-stage approach

to recognize products in rack images. First, SIFT features and

Hough transformation are used to find probable matches of

reference product images on the shelf. Next, to determine the

missing products and remove incorrect matches, the sub-graph

isomorphism between the observed output and the actual

output is performed.

Goldman and Goldberger [16] proposed a Deep

Learning-based method to classify well-structured objects

with high inter-class similarity by treating sequences of

images as linear Conditional Random Fields (CRFs) to

include contextual information. Baz et al. [17] proposed a

hybrid classifier combining Support Vector Machines (SVM)

with probabilistic graphical models like Hidden Markov

Models (HMM) and CRFs by exploiting the spatial continuity

in the arrangement of products on a rank. Since products of

similar brands are placed adjacent to each other, the authors

model the contextual information using an HMM or CRF.

The classification performance of SVM has been seen to

improve with the inclusion of this contextual information.

A method for fine-grained classification of products by

detecting recurring features in rack images is presented in

[18]. These recurring features are compared with SIFT features

from the logo regions of the reference images and assigned

a rough class label. Further, fine-grained classification has

been performed by training a VGG-16 [19] with an attention

map policy generated using matching SURF [13] and BRISK

[20] features from the product instance and the template

image of the rough class label. However, such a template

matching-based approach is likely to be time-intensive due

to the exhaustive search required across the entire rack image

and is not suitable for most practical purposes. The work of

Tonioni et al. [3] is one of the few approaches that consider

Deep Learning-based prediction for both object localization

and prediction. Here, the authors make use of a two-stage

pipeline based on YOLO-v2 [21] and VGG-16 [19], in which

the YOLO-v2 object detector is fine-tuned using a privately

annotated dataset to predict the bounding boxes of the product

instances. Further, the VGG-16 embedder is trained with triplet

loss [22] and MAC [23] features to identify the product class.

From the extensive literature survey, it has been found

that classical image processing and template matching-based

methods dominate Deep Learning-based techniques in the

majority of the retail use cases. The scarcity of sufficient

ground truth for product images is one of the primary causes

of this. Template matching-based techniques suffer from high

response time and are also susceptible to noise. On the other

hand, Neural Network-based approaches are known for their

robustness against noise and variations of input conditions, and

the few existing approaches in this category use heavyweight
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models that are not suitable for implementation on edge

devices. In this work, we employ effective but lightweight

Deep Neural Network architectures for both object localization

and product detection steps and perform a rigorous analysis

and comparative study with state-of-the-art approaches. Our

approach is described in detail in Section III.

III. PROPOSED APPROACH

We implement a two-stage pipeline for object localization

and recognition tasks. In the first stage, a faster RCNN-based

Deep Neural Network [24] is employed to output the bounding

box coordinates of the region proposals through a regressor

head. In the second stage, another CNN-based Deep Neural

Network model is used to convert these region proposals into

feature descriptors in a latent space. Unlike previous models

like YOLO [21, 25, 26] and SSD [27] that combine the

region proposal and the recognition stages in a single model,

our proposed two-stage architecture considers two separate

dedicated lightweight models for the two above-mentioned

tasks (as explained in the following two sub-sections), which is

expected to improve the effectiveness of the overall approach

further.

A. Localizing Product Instances

As mentioned before, we use the faster-RCNN architecture

with ResNet-50 [28] backbone to extract features for localizing

product instances. This feature extractor is followed by

a Feature Pyramid Network [29] that aggregates useful

multi-scale features in a top-down direction. Next, there

is a region proposal network (RPN) that uses anchors

of fixed sizes and aspect ratios to output high-quality

region proposals. After Region-of-Interest (RoI) pooling and

Non-Maximal-Suppression (NMS), there is a bounding box

regressor head. The classifier head of standard RCNN

architecture is discarded since our embedder serves the same

objective. Then, we extract patches cropped from the input

image according to the predicted bounding boxes.

The complete architecture of the localization network is

shown in Fig. 2. The network consists of five convolutional

Fig. 2 The Localization Pipeline

blocks in which each block is a sub-network of multiple layers

that produces feature maps of the same size. The outputs from

the last layers of the second to fifth blocks are extracted and

a reference set {C2, C3, C4, C5} is formed. The feature map

corresponding to the first block C1 has not been included for

further operations due to its large memory footprint. These

feature maps are next used to construct a feature pyramid.

The process of constructing the pyramid starts by passing C5

through a 1×1×d convolution layer to reduce the number of

channels to d and obtain the first pyramid feature P5. Except

for P5, the rest of the feature pyramids are constructed by

following a similar method. So, P5 is upsampled to twice

its size using nearest-neighbor interpolation. Let us call the

output from this stage P̃5. Next, C4 is convolved using a

1×1×d dimensional filter to obtain C̃4 which has dimensions

the same as that of P̃5. The feature maps C̃4 and P̃5 are

henceforth added element-wise and this merged feature map

is passed through another 3×3 dense convolution operation

to compensate for the aliasing effect of upsampling and form

the pyramid layer P4. The depth of all the pyramid layers

is set to d = 256. A similar procedure is also followed to

obtain the feature pyramids P3 and P2. The construction of

the feature pyramid Pk−1 from Pk is mathematically expressed

as follows:

P̃k = Upsample×2(Pk) (1)

C̃k−1 = Conv1×1(Ck−1) (2)

Pk−1 = Conv3×3(P̃k + C̃k−1) (3)

The resulting feature pyramids carry a good balance of

semantic and fine-grained information. So anchors of a

specific scale are assigned to each pyramid level instead of

repetitively assigning all scales of anchors to every level. This

avoids computational redundancy and ensures the simplicity

of design. The pyramid levels P2, P3, P4, P5 are assigned

anchors of scales 32, 64, 128, and 256, respectively. Anchors

of each scale have three aspect ratios: 1:1, 1:2, 2:1.

The FPN is followed by a region proposal network (RPN)

[24] which is a mini-convolutional network of 256 channels

having 3×3 kernels. It further separates into two branches:

object classifier and object regressor. The object classifier
branch performs object vs background binary classification

whereas the object regressor predicts the bounding boxes

for anchors with high objectness scores. Each of the feature

pyramids, P5, P4, P3, and P2, is processed using an RPN in a

sliding window manner. As shown in Fig. 2, weight-sharing is

done among all the RPNs, and the outputs from the different

RPNs are passed through a common Region-of-Interest

(RoI) pooling layer. The RoIs are next passed through two

fully-connected layers and the final bounding box regressor
head to localize the objects in the rack image.

B. Recognition of Products

The recognition pipeline shown in Fig. 3 predicts the class

of each object detected within the rack image in the previous

stage. A ResNet-18 embedder is used for this task which is

trained offline by sampling triplets of different query images

consisting of an anchor ia, a positive ip, and a negative in
image. Let the embedding of these three images be denoted

by xa
i , xp

i , and xn
i respectively. The anchor and the positive

images belong to the same category while the negative image

belongs to a different class. Using the common Euclidean
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Fig. 3 The Recognition Pipeline

distance function d the network is trained to minimize the

triplet loss L defined as

L =
1

N

N∑

i=1

max(0,d(xa
i , x

p
i )−d(xa

i , x
n
i )+α). (4)

The objective here is to learn an embedding such that the

following inequality is satisfied:

‖xa
i − xp

i ‖22 + α < ‖xa
i − xn

i ‖22, (5)

where α denotes the fixed minimum margin between

the distance pairs. If a single image for every product

class is present in the query image database, then we

use data augmentation to generate multiple anchor images

corresponding to each query image. For this, we apply

standard image augmentation methods such as Gaussian

blur, random crop, brightness, and saturation variations. A

negative image of the triplet can be chosen in various ways.

Theoretically, a huge number of triplets (≈ N2) can be

generated even from a small dataset, where N is the size of the

dataset. Hence, to ensure faster convergence with good sample

efficiency we apply the strategy of Online Hard Negative

Mining (OHNM). In this approach, for every mini-batch of

size b loaded during training, the hardest negative sample

against each positive sample is chosen from the same

batch. This selection scheme reduces the total computational

complexity to O(bN) from O(N2). Mathematically,

Xbat ⊂ |D|, (6)

xa
i = f̃(xp

i ), ∀xp
i ∈ Xbat, (7)

x̃n
i = argminxj‖xa

i − xj‖22, x̃n
i ∈ Xbat. (8)

f̃ denotes the image augmentation operator, xp
i denotes a

positive sample, xn
i denotes a negative sample, xa

i denotes

an anchor generated from xp
i using data augmentation, and

Xbat is a mini-batch of data. Through the minimization of

this loss function, the network learns to encode images of the

same class close to each other in the encoded space while

separating those belonging to different classes.

The Embedder, as shown in Fig. 4, is a ResNet-18 [28]

pre-trained on the ImageNet1K [30] dataset. The ResNet-18

contains five convolutional blocks B1, B2, B3, B4, B5

that output feature maps of sizes 112, 56, 28, 14, and 7,

respectively. The corresponding feature maps have been named

X1, X2, X3, X4, and X5 in Fig. 4. In our work, the final

Fig. 4 Block diagram of ResNet-18-based Encoder

descriptors are extracted by applying MAC [23] operation on

blocks B4 and B5, yielding X̃4 and X̃5, respectively, shown

as:

X4 = Conv4(X3), size = (14, 14, 256)

X5 = Conv5(X4), size = (7, 7, 512)

X̃4 = GlobalMaxPool(X4), size = (1, 256)

X̃5 = GlobalMaxPool(X5), size = (1, 512)

Xembed = concat(X̃4, X̃5), size = (1, 768)

Next, the vectors are concatenated into a single descriptor and

�2 normalized.

IV. EXPERIMENTS

All experiments are conducted in Google Colab notebooks

that provide free GPU and TPU support. PyTorch has been

chosen as the deep learning framework. The colab virtual

machines (VMs), by default, offer a RAM of 13 GB. The

fine-tuning of Faster RCNN for object detection is done on

an Nvidia Tesla T4 GPU with 16 GB memory. The embedder

ResNet-18 is fine-tuned on a Nvidia Tesla K80 GPU with 12

GB capacity.

The Faster-RCNN FPN, pre-trained on COCO 2017 [31],

is fine-tuned by Stochastic Gradient Descent (SGD) [32] with

momentum 0.8 and weight decay 5× 10−2 using a manually

annotated small subset of 60 rack images from the Grozi-3.2K

Food data. A learning rate schedule with warmup has been

used for fine-tuning, where the number of warmup iterations is

set to the total number of mini-batches Nbatch = ‖D‖
b . Here, D

denotes the dataset for fine-tuning, and b (= 8) is the batch size.

The warmup factor is set to 10−3 and the maximum learning

rate is set to 5× 10−2. Having fine-tuned the detector for 25

epochs with the above settings, the learning rate is reduced to

5×10−3 for additional 15 epochs. During fine-tuning, we use

the top 1000 region proposals.

The Embedder ResNet-18 is the pre-trained checkpoint on

ImageNet1K [30] dataset. It is fine-tuned using the standard

triplet loss with a margin of 1.0 using each product present in

the query image database. In this work, we use the Grozi-3.2k

data [7] that contains a total of 3235 query images, one for

each product item. The fine-tuning is continued for 15 epochs

with a fixed learning rate of 10−4 using Adaptive Gradient

Descent (ADAM) [33] optimizer. For evaluation, we use 680

rack images from five different retail stores present in the
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Grozi-3.2k data [7]. However, the ground truth annotations for

this data set consist of identical products, that are adjacently

placed, and grouped under a single bounding box. Hence, this

data set is ideal for multi-label image classification tasks. We

also use the GP-180 data [15] for evaluation which is a subset

of the Grozi-3.2k data and contains instance-level annotations

of 74 rack images.

In our first experiment, we evaluate the effectiveness of the

product detection model (localizer) based on Faster-RCNN

(refer to Section III-A). Fig. 5 shows two rack images from

GP-180 along with the predicted bounding boxes. It can be

visually observed from the results that our detector accurately

localizes the different items for each of the test images and

it is also able to correctly identify the blank spaces (i.e., the

regions on the rack with no objects).

(a) (b)

Fig. 5 Sample rack images from GP-180 and the bounding boxes predicted
by our Faster-RCNN-based product detector marked in red

TABLE I
PERFORMANCE OF OUR LOCALIZATION PIPELINE ON GP-180 IN THE

STANDARD COCO FORMAT

Metric maxDets Result
AP @[IoU = 0.50] 100 0.864
AP @[IoU = 0.75] 100 0.726

AP @[IoU = 0.50:0.95] 100 0.594
AR @[IoU = 0.50:0.95] 1 0.059
AR @[IoU = 0.50:0.95] 10 0.539
AR @[IoU = 0.50:0.95] 100 0.672

Here, maxDets represents the number of region proposals used during
testing.

We also study the effectiveness of our Faster RCNN-based

object localization model using standard COCO metrics in

Table I. The GP-180 data have been used for this experiment.

In the table, AP denotes Average Precision, AR denotes

Average Recall, and maxDets signifies the number of top

region proposals considered during the test time. It is

observed that our detection model is capable of precisely

localizing grocery products. For IoU in the range 0.50 to 0.95

(incremented in step-size of 0.05), the AP is ∼ 60%. As far as

the AR is concerned, it increases with the number of region

proposals, as expected. However, the larger the number of

region proposals the longer will be the inference time and

the lesser will be the AP. In a real-time use case (using only

10 region proposals), our model accurately localizes 54% of

the items on the rack, whereas, on 100 region proposals, AR

satisfactorily increases to 67.2%.

Each of the following experiments deals with the evaluation

of our overall product detection and recognition pipeline and a

comparative study with other state-of-the-art techniques. First,

we compare our work with [18] and [3] using the GP-180

[15] data. While the work in [3] describes an end-to-end

Deep Learning approach, that in [18] is a hybrid method

with a template matching-based bounding box detector and a

class-specific CNN recognizer. For this experiment, we follow

the same protocol as described in [15], i.e., we consider a

prediction to be correct if the output label matches the ground

truth label of the product, provided the IoU between the

detected and ground-truth boxes is greater than 0.5. In Table II,

we report the mean average precision mAP@0.5 and product

recall PR@0.5 of our method, [18], and [3]. It is observed that

TABLE II
COMPARATIVE RESULTS OF OUR FULL PIPELINE ON GP-180 ACCORDING

TO THE PROTOCOLS ADOPTED IN [3] AND [18]

Method mAP@0.5 PR@0.5
yolo ld+lf-mc-th [3] 76.93 86.56
SIFT + vgg16 [18] 85.79 -

frcnn + res50 + res18 (ours) 82.70 89.70

the proposed method improves over [3] by ∼ 5% and ∼ 3%

in terms of mAP@0.5 and PR@0.5, respectively. Although

[18] shows ∼ 3% higher mAP@0.5 compared to that of ours,

it involves the use of hand-crafted feature engineering for

product localization which is significantly time-intensive and is

expected to be less robust to the variation of input conditions.

We also compare our approach with two recent approaches,

namely [5] and [4], on the GP-180 data set using a similar test

protocol as specified in [4, 5]. Both of these compared methods

are hybrid approaches that use exemplar-driven localization

and CNN-based object recognition framework. The testing

protocol can be described as follows: Let a product P be

present on the rack. If the center of any detected bounding box

lies within P in the rack and the enclosed item is predicted

as P, the count of true-positives (TP) is incremented by 1. If

the center of the detected bounding box lies within P in the

rack but the enclosed item is not recognized as P by the object

recognition model, then the count of false-positives (FP) of the

rack is incremented by 1. Further, if the center of a detected

box does not lie within any true product in the rack, the count

FP is again increased by 1. Lastly, if there exists no detected

box whose center lies within P, the count of false-negatives
(FN) of the rack is incremented by 1. Considering the above,

we compare our approach with that of [4] and [5] and present

the F1 scores after the final recognition phase in Table III. It

can be seen from the table that our approach outperforms both

the other two compared methods in terms of F1 score by at

least 2%.

In the next experiment, we compare our approach with

state-of-the-art methods [3, 7, 34] using the Grozi-3.2k Food

data set. Here, [34] is a non-ML approach based on the Hough

transform, whereas [7] involves a fusion of several strategies
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TABLE III
COMPARATIVE RESULTS OF OUR FULL PIPELINE ON GP-180 DATASET

ACCORDING TO THE EVALUATION PROTOCOL FOLLOWED IN [4, 5]

Method F1 score (%)
ERP-CNN [4] 81.05
R-CNN-G [5] 80.21

Ours 83.20

including Fast dense pixel matching, Random Forests, and

Genetic Algorithms. On the other hand, [3] follows a fully

Deep Learning pipeline. The evaluation protocol followed

here is similar to that described in [7]. Specifically, we

use two metrics, namely, mean average precision (mAP)

and mean average product recall (mAPR). Corresponding

to each bounding box detected by the localization model,

we fetch the top K predictions (candidate product items)

by the object recognition model. If the ground truth label

is present within these top K predictions, the true-positive
count is increased by 1. Otherwise, the false-positive count

is incremented by 1. Next, the precision and product recall

are computed and averaged across all the test images to

obtain the average precision (AP) and average product recall

(APR) scores. The AP and APR values computed for different

values of K are averaged to report the final mAP and mAPR

metrics. The corresponding results are shown in Table IV

for the compared methods for two values of K, i.e., 20

and 50. It can be seen from the results that our method

TABLE IV
COMPARATIVE RESULTS ON THE GROZI-3.2K FOOD DATASET USING THE

PROTOCOL AS DESCRIBED IN [7]

Method mAP (%) mAPR (%)
FM+HO [34] 23.71 41.60

yolo ld+lf-mc-th [3] 36.02 58.41
RF+PM+GA [7] 23.49 43.13

Ours 47.77 58.11

outperforms each of [7, 34] both in terms of mAP and

mAPR. It also surpasses the mAP score provided by [3]

by a large margin of 11%, but in terms of mAPR we fall

short of [3] by only ∼ 0.30%. However, as also mentioned

in Section I, the method in [3] uses VGG-16 for object

recognition which has a larger memory footprint compared

to our ResNet-18-based product recognition model. While the

YOLO-based object localization model has 62M parameters

and the VGG-16-based product recognition model has 138M

parameters, our Faster RCNN-FPN-based localization model

has only 42M parameters and the ResNet-18-based recognition

model has only 11M parameters. Hence, in terms of mAP,

mAPR, and memory space requirement, our approach can be

regarded as the best among the other competing methods used

in this study.

V. CONCLUSIONS

In this work, we present a two-stage Deep Learning-based

pipeline to automatically detect product locations and identify

the products placed on the racks in retail stores. The first stage

involves the generation and refinement of region proposals

using a Faster-RCNN-FPN model. In the second stage,

these region proposals are passed through a ResNet-18-based

embedder followed by a classification layer to predict

the product class. During deployment, these two models

are connected in an end-to-end manner to automatically

identify which products are present on the shelves of a

rack using only an image of the complete rack. We have

made a thorough evaluation of both the localization and

the recognition frameworks through extensive experiments

and a comparative study to verify the effectiveness of our

approach. Due to the use of lightweight neural network-based

models for both of the localization and recognition phases,

our approach is time-efficient and requires only a small

amount of memory to run making it suitable for deployment

on edge devices. Only a few existing approaches used in

the comparative study, namely [3, 18], show performance

comparable to that of our model. However, these are either

time-intensive due to the use of hand-crafted features for object

detection or employ heavy-weight neural network models

to perform the prediction, and are hence not suitable for

large-scale applications. In contrast, our lightweight model

can be conveniently used to keep track of inventories in large

retail stores in a time-efficient manner. In the future, network

distillation may be used to reduce the complexity of our

models further.

ACKNOWLEDGMENT

The authors would like to thank IIT(BHU), Varanasi

for providing the necessary resources including servers,

technicians, etc., to initiate research work in this area.

REFERENCES

[1] Yuchen Wei, Son N. Tran, Shuxiang Xu, Byeong Ho

Kang, and Matthew Springer. Deep learning for

retail product recognition: Challenges and techniques.

Computational Intelligence and Neuroscience, 2020,

Article ID: 8875910, 2020.

[2] Bikash Santra and Dipti Prasad Mukherjee. A

comprehensive survey on computer vision based

approaches for automatic identification of products in

retail store. Image and Vision Computing, 86:45–63,

2019.

[3] Alessio Tonioni, Eugenio Serra, and Luigi di Stefano. A

deep learning pipeline for product recognition on store

shelves. In Proceedings of the International Conference
on Image Processing, Applications and Systems, pages

25–31, 2018.

[4] Bikash Santra, Avishek Shaw, and Dipti Prasad

Mukherjee. An end-to-end annotation-free machine

vision system for detection of products on the rack.

Machine Vision and Applications, 32(3):1–13, 2021.

[5] Bikash Santra, Avishek Shaw, and Dipti Prasad

Mukherjee. Graph-based non-maximal suppression for

detecting products on the rack. Pattern Recognition
Letters, 140:73–80, 2020.

379International Scholarly and Scientific Research & Innovation 17(6) 2023 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

7,
 N

o:
6,

 2
02

3 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

13
13

6.
pd

f



World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

Vol:17, No:6, 2023

[6] Bikash Santra, Avishek Shaw, and Dipti Prasad

Mukherjee. Part-based annotation-free fine-grained

classification of images of retail products. Pattern
Recognition, 121:108257, 2022.

[7] Marian George and Christian Floerkemeier. Recognizing

products: A per-exemplar multi-label image classification

approach. In Proceedings of the European Conference on
Computer Vision, pages 440–455, 2014.

[8] Jinjun Wang, Jianchao Yang, Kai Yu, Fengjun

Lv, Thomas S. Huang, and Yihong Gong.

Locality-constrained linear coding for image

classification. Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition, pages 3360–3367, 2010.

[9] Wenyon Wang, Yongcheng Cui, Guangshun Li, Chuntao

Jiang, and Song Deng. A self-attention-based

destruction and construction learning fine-grained image

classification method for retail product recognition.

Neural Computing and Applications, 32(18):1–10, 2020.

[10] Anton Osokin, Denis Sumin, and Vasily Lomakin. Os2d:

One-stage one-shot object detection by matching anchor

features. In Proceedings of the European Conference on
Computer Vision, pages 635–652, 2020.

[11] Anurag Saran, Ehtesham Hassan, and Avinash Kumar

Maurya. Robust visual analysis for planogram

compliance problem. In Proceedings of the
IAPR International Conference on Machine Vision
Applications, pages 576–579. IEEE, 2015.

[12] Archan Ray, Nishant Kumar, Avishek Shaw, and

Dipti Prasad Mukherjee. U-pc: Unsupervised planogram

compliance. In Proceedings of the European Conference
on Computer Vision, pages 586–600, 2018.

[13] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:

Speeded up robust features. In Proceedings of the
European Conference on Computer Vision, 2006.

[14] Song Liu, W. Li, Stephen J. Davis, Christian Ritz, and

Hongda Tian. Planogram compliance checking based

on detection of recurring patterns. IEEE MultiMedia,

23(2):54–63, 2016.

[15] Alessio Tonioni and Luigi di Stefano. Product

recognition in store shelves as a sub-graph isomorphism

problem. In Proceedings of the International Conference
on Image Analysis and Processing, pages 682–693, 2017.

[16] Eran Goldman and Jacob Goldberger. Large-scale

classification of structured objects using a crf with deep

class embedding. arXiv preprint arXiv:1705.07420,

2017.

[17] Ipek Baz, Erdem Yörük, and Müjdat Çetin.
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