Search results for: Combustion Chamber Geometry
226 Effect of Organic-waste Compost Addition on Leaching of Mineral Nitrogen from Arable Land and Plant Production
Authors: Jakub Elbl, Lukas Plošek, Antonín Kintl, Jaroslav Záhora, Jitka Přichystalová, Jaroslav Hynšt
Abstract:
Application of compost in agriculture is very desirable worldwide. In the Czech Republic, compost is the most often used to improve soil structure and increase the content of soil organic matter, but the effects of compost addition on the fate of mineral nitrogen are only scarcely described. This paper deals with possibility of using combined application of compost, mineral and organic fertilizers to reduce the leaching of mineral nitrogen from arable land. To demonstrate the effect of compost addition on leaching of mineral nitrogen, we performed the pot experiment. As a model crop, Lactuca sativa L. was used and cultivated for 35 days in climate chamber in thoroughly homogenized arable soil. Ten variants of the experiment were prepared; two control variants (pure arable soil and arable soil with added compost), four variants with different doses of mineral and organic fertilizers and four variants of the same doses of mineral and organic fertilizers with the addition of compos. The highest decrease of mineral nitrogen leaching was observed by the simultaneous applications of soluble humic substances and compost to soil samples, about 417% in comparison with the control variant. Application of these organic compounds also supported microbial activity and nitrogen immobilization documented by the highest soil respiration and by the highest value of the index of nitrogen availability. The production of plant biomass after this application was not the highest due to microbial competition for the nutrients in soil, but was 24% higher in comparison with the control variant. To support these promising results the experiment should be repeated in field conditions.
Keywords: Nitrogen, Compost, Salad, Arable land.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2070225 Performance Evaluation of Iris Region Detection and Localization for Biometric Identification System
Authors: Chit Su Htwe, Win Htay
Abstract:
The iris recognition technology is the most accurate, fast and less invasive one compared to other biometric techniques using for example fingerprints, face, retina, hand geometry, voice or signature patterns. The system developed in this study has the potential to play a key role in areas of high-risk security and can enable organizations with means allowing only to the authorized personnel a fast and secure way to gain access to such areas. The paper aim is to perform the iris region detection and iris inner and outer boundaries localization. The system was implemented on windows platform using Visual C# programming language. It is easy and efficient tool for image processing to get great performance accuracy. In particular, the system includes two main parts. The first is to preprocess the iris images by using Canny edge detection methods, segments the iris region from the rest of the image and determine the location of the iris boundaries by applying Hough transform. The proposed system tested on 756 iris images from 60 eyes of CASIA iris database images.Keywords: Canny, C#, hough transform, image preprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2085224 Virtual Reality Models used on the Visualization of Construction Activities in Civil Engineering Education
Authors: Alcínia Z. Sampaio, Pedro G. Henriques
Abstract:
Three-dimensional geometric models have been used to present architectural and engineering works, showing their final configuration. When the clarification of a detail or the constitution of a construction step in needed, these models are not appropriate. They do not allow the observation of the construction progress of a building. Models that could present dynamically changes of the building geometry are a good support to the elaboration of projects. Techniques of geometric modeling and virtual reality were used to obtain models that could visually simulate the construction activity. The applications explain the construction work of a cavity wall and a bridge. These models allow the visualization of the physical progression of the work following a planned construction sequence, the observation of details of the form of every component of the works and support the study of the type and method of operation of the equipment applied in the construction. These models presented distinct advantage as educational aids in first-degree courses in Civil Engineering. The use of Virtual Reality techniques in the development of educational applications brings new perspectives to the teaching of subjects related to the field of civil construction.Keywords: Education, Engineering, virtual reality, visualsimulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164223 Finite Element Analysis of Connecting Rod
Authors: Mohammed Mohsin Ali H., Mohamed Haneef
Abstract:
The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.
Keywords: Connecting rod, ASTM a514 cold quenched steel, static analysis, fatigue analysis, stress life approach.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2732222 Evaluation of Stiffness and Damping Coefficients of Multiple Axial Groove Water Lubricated Bearing Using Computational Fluid Dynamics
Authors: Neville Fernandes, Satish Shenoy B., Raghuvir Pai B., Rammohan S. Pai B, Shrikanth Rao.D
Abstract:
This research details a Computational Fluid Dynamics (CFD) approach to model fluid flow in a journal bearing with 8 equispaced semi-circular axial grooves. Water is used as the lubricant and is fed from one end of the bearing to the other, under pressure. The geometry of the bearing is modeled using a commercially available modeling software GAMBIT and the flow analysis is performed using a dedicated CFD analysis software FLUENT. The pressure distribution in the bearing clearance is obtained from FLUENT for various whirl ratios and is used to calculate the hydrodynamic force components in the radial and tangential direction of the bearing. These values along with the various whirl speeds can be used to do a regression analysis to determine the stiffness and damping coefficients. The values obtained are then compared with the stiffness and damping coefficients of a 3 Axial groove water lubricated journal bearing and those obtained from a FORTRAN code for a similar bearing.
Keywords: CFD, multiple axial groove, Water lubricated, Stiffness and Damping Coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3134221 Smart Surveillance using PDA
Authors: Basem Mustafa Abd. Amer , Syed Abdul Rahman Al-Attas
Abstract:
The aim of this research is to develop a fast and reliable surveillance system based on a personal digital assistant (PDA) device. This is to extend the capability of the device to detect moving objects which is already available in personal computers. Secondly, to compare the performance between Background subtraction (BS) and Temporal Frame Differencing (TFD) techniques for PDA platform as to which is more suitable. In order to reduce noise and to prepare frames for the moving object detection part, each frame is first converted to a gray-scale representation and then smoothed using a Gaussian low pass filter. Two moving object detection schemes i.e., BS and TFD have been analyzed. The background frame is updated by using Infinite Impulse Response (IIR) filter so that the background frame is adapted to the varying illuminate conditions and geometry settings. In order to reduce the effect of noise pixels resulting from frame differencing morphological filters erosion and dilation are applied. In this research, it has been found that TFD technique is more suitable for motion detection purpose than the BS in term of speed. On average TFD is approximately 170 ms faster than the BS techniqueKeywords: Surveillance, PDA, Motion Detection, ImageProcessing , Background Subtraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759220 The Effect of Mixture Velocity and Droplet Diameter on Oil-water Separator using Computational Fluid Dynamics (CFD)
Authors: M. Abdulkadir, V. Hernandez-Perez
Abstract:
The characteristics of fluid flow and phase separation in an oil-water separator were numerically analysed as part of the work presented herein. Simulations were performed for different velocities and droplet diameters, and the way this parameters can influence the separator geometry was studied. The simulations were carried out using the software package Fluent 6.2, which is designed for numerical simulation of fluid flow and mass transfer. The model consisted of a cylindrical horizontal separator. A tetrahedral mesh was employed in the computational domain. The condition of two-phase flow was simulated with the two-fluid model, taking into consideration turbulence effects using the k-ε model. The results showed that there is a strong dependency of phase separation on mixture velocity and droplet diameter. An increase in mixture velocity will bring about a slow down in phase separation and as a consequence will require a weir of greater height. An increase in droplet diameter will produce a better phase separation. The simulations are in agreement with results reported in literature and show that CFD can be a useful tool in studying a horizontal oilwater separator.Keywords: CFD, droplet diameter, mixture velocity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3180219 An Efficient Passive Planar Micromixer with Finshaped Baffles in the Tee Channel for Wide Reynolds Number Flow Range
Authors: C. A. Cortes-Quiroz, A. Azarbadegan, E. Moeendarbary
Abstract:
A new design of a planar passive T-micromixer with fin-shaped baffles in the mixing channel is presented. The mixing efficiency and the level of pressure loss in the channel have been investigated by numerical simulations in the range of Reynolds number (Re) 1 to 50. A Mixing index (Mi) has been defined to quantify the mixing efficiency, which results over 85% at both ends of the Re range, what demonstrates the micromixer can enhance mixing using the mechanisms of diffusion (lower Re) and convection (higher Re). Three geometric dimensions: radius of baffle, baffles pitch and height of the channel define the design parameters, and the mixing index and pressure loss are the performance parameters used to optimize the micromixer geometry with a multi-criteria optimization method. The Pareto front of designs with the optimum trade-offs, maximum mixing index with minimum pressure loss, is obtained. Experiments for qualitative and quantitative validation have been implemented.
Keywords: Computational fluids dynamics, fin-shaped baffle, mixing strategies, multi-objective optimization, passive micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1987218 Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor
Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira
Abstract:
We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.
Keywords: Numerical simulation, flexible blade, fluid-structure interaction, ANSYS Workbench, flapwise deformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 125217 Behavior of Current in a Semiconductor Nanostructure under Influence of Embedded Quantum Dots
Authors: H. Paredes Gutiérrez, S. T. Pérez-Merchancano
Abstract:
Motivated by recent experimental and theoretical developments, we investigate the influence of embedded quantum dot (EQD) of different geometries (lens, ring and pyramidal) in a double barrier heterostructure (DBH). We work with a general theory of quantum transport that accounts the tight-binding model for the spin dependent resonant tunneling in a semiconductor nanostructure, and Rashba spin orbital to study the spin orbit coupling. In this context, we use the second quantization theory for Rashba effect and the standard Green functions method. We calculate the current density as a function of the voltage without and in the presence of quantum dots. In the second case, we considered the size and shape of the quantum dot, and in the two cases, we worked considering the spin polarization affected by external electric fields. We found that the EQD generates significant changes in current when we consider different morphologies of EQD, as those described above. The first thing shown is that the current decreases significantly, such as the geometry of EQD is changed, prevailing the geometrical confinement. Likewise, we see that the current density decreases when the voltage is increased, showing that the quantum system studied here is more efficient when the morphology of the quantum dot changes.
Keywords: Quantum semiconductors, nanostructures, quantum dots, spin polarization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 956216 Study on Robot Trajectory Planning by Robot End-Effector Using Dual Curvature Theory of the Ruled Surface
Authors: Y. S. Oh, P. Abhishesh, B. S. Ryuh
Abstract:
This paper presents the method of trajectory planning by the robot end-effector which accounts for more accurate and smooth differential geometry of the ruled surface generated by tool line fixed with end-effector based on the methods of curvature theory of ruled surface and the dual curvature theory, and focuses on the underlying relation to unite them for enhancing the efficiency for trajectory planning. Robot motion can be represented as motion properties of the ruled surface generated by trajectory of the Tool Center Point (TCP). The linear and angular properties of the six degree-of-freedom motion of end-effector are computed using the explicit formulas and functions from curvature theory and dual curvature theory. This paper explains the complete dualization of ruled surface and shows that the linear and angular motion applied using the method of dual curvature theory is more accurate and less complex.
Keywords: Dual curvature theory, robot end effector, ruled surface, TCP, tool center point.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1350215 Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge
Authors: Shatirah Akib, Hossein Basser, Hojat Karami, Afshin Jahangirzadeh
Abstract:
Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.
Keywords: Scour, Bridge pier, numerical simulation, SSIIM 2.0.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766214 Optimization of Breast Tumor Cells Isolation Efficiency and Purity by Membrane Filtration
Authors: Bhuvanendran Nair Gourikutty Sajay, Liu Yuxin, Chang Chia-Pin, Poenar Daniel Puiu, Abdur Rub Abdur Rahman
Abstract:
Size based filtration is one of the common methods employed to isolate circulating tumor cells (CTCs) from whole blood. It is well known that this method suffers from isolation efficiency to purity tradeoff. However, this tradeoff is poorly understood. In this paper, we present the design and manufacturing of a special rectangular slit filter. The filter was designed to retain maximal amounts of nucleated cells, while minimizing the pressure on cells, thereby preserving their morphology. The key parameter, namely, input pressure, was optimized to retain the maximal number of tumor cells, whilst maximizing the depletion of normal blood cells (red and white blood cells and platelets). Our results indicate that for a slit geometry of 5 × 40 μm on a 13 mm circular membrane with a fill factor of 21%, a pressure of 6.9 mBar yields the optimum for maximizing isolation of MCF-7 and depletion of normal blood cells.Keywords: Circulating tumor cells, Parylene slit membrane, Retention, White Blood Cell depletion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837213 Finite Element Analysis of Oil-Lubricated Elliptical Journal Bearings
Authors: Marco T. C. Faria
Abstract:
Fixed-geometry hydrodynamic journal bearings are one of the best supporting systems for several applications of rotating machinery. Cylindrical journal bearings present excellent loadcarrying capacity and low manufacturing costs, but they are subjected to the oil-film instability at high speeds. An attempt of overcoming this instability problem has been the development of non-circular journal bearings. This work deals with an analysis of oil-lubricated elliptical journal bearings using the finite element method. Steadystate and dynamic performance characteristics of elliptical bearings are rendered by zeroth- and first-order lubrication equations obtained through a linearized perturbation method applied on the classical Reynolds equation. Four-node isoparametric rectangular finite elements are employed to model the bearing thin film flow. Curves of elliptical bearing load capacity and dynamic force coefficients are rendered at several operating conditions. The results presented in this work demonstrate the influence of the bearing ellipticity on its performance at different loading conditions.
Keywords: Elliptical journal bearings, non-circular journal bearings, hydrodynamic bearings, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3244212 Modeling of Blood Flow Velocity into the Main Artery via Left Ventricle of Heart during Steady Condition
Authors: Mohd Azrul Hisham Mohd Adib, Nur Hazreen Mohd Hasni
Abstract:
A three-dimensional and pulsatile blood flow in the left ventricle of heart model has been studied numerically. The geometry was derived from a simple approximation of the left ventricle model and the numerical simulations were obtained using a formulation of the Navier-Stokes equations. In this study, simulation was used to investigate the pattern of flow velocity in 3D model of heart with consider the left ventricle based on critical parameter of blood under steady condition. Our results demonstrate that flow velocity focused from mitral valve channel and continuous linearly to left ventricle wall but this skewness progresses into outside wall in atrium through aortic valve with random distribution that is irregular due to force subtract from ventricle wall during cardiac cycle. The findings are the prediction of the behavior of the blood flow velocity pattern in steady flow condition which can assist the medical practitioners in their decision on the patients- treatments.
Keywords: Mitral Valve, Aortic Valve, Cardiac Cycle, Leaflet, Biomechanics, Left Ventricle
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2137211 A Meta-Model for Tubercle Design of Wing Planforms Inspired by Humpback Whale Flippers
Authors: A. Taheri
Abstract:
Inspired by topology of humpback whale flippers, a meta-model is designed for wing planform design. The net is trained based on experimental data using cascade-forward artificial neural network (ANN) to investigate effects of the amplitude and wavelength of sinusoidal leading edge configurations on the wing performance. Afterwards, the trained ANN is coupled with a genetic algorithm method towards an optimum design strategy. Finally, flow physics of the problem for an optimized rectangular planform and also a real flipper geometry planform is simulated using Lam-Bremhorst low Reynolds number turbulence model with damping wall-functions resolving to the wall. Lift and drag coefficients and also details of flow are presented along with comparisons to available experimental data. Results show that the proposed strategy can be adopted with success as a fast-estimation tool for performance prediction of wing planforms with wavy leading edge at preliminary design phase.
Keywords: Humpback whale flipper, cascade-forward ANN, GA, CFD, Bionics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3642210 Experimental Investigation of the Effect of Compression Ratio in a Direct Injection Diesel Engine Running on Different Blends of Rice Bran Oil and Ethanol
Authors: Perminderjit Singh, Randeep Singh
Abstract:
The performance, emission and combustion characteristics of a single cylinder four stroke variable compression ratio multi fuel engine when fueled with different blends of rice bran oil methyl ester and ethanol are investigated and compared with the results of standard diesel. Bio diesel produced from Rice bran oil by transesterification process has been used in this study. Experiment has been conducted at a fixed engine speed of 1500 rpm, 50% load and at compression ratios of 16.5:1, 17:1, 17.5:1 and 18:1. The impact of compression ratio on fuel consumption, brake thermal efficiency and exhaust gas emissions has been investigated and presented. Optimum compression ratio which gives best performance has been identified. The results indicate longer ignition delay, maximum rate of pressure rise, lower heat release rate and higher mass fraction burnt at higher compression ratio for waste cooking oil methyl ester when compared to that of diesel. The brake thermal efficiency at 50% load for Rice bran oil methyl ester blends and diesel has been calculated and the blend B40 is found to give maximum thermal efficiency. The blends when used as fuel results in reduction of carbon monoxide, hydrocarbon and increase in nitrogen oxides emissions.
Keywords: Biodiesel, Rice bran oil, Transesterification, Ethanol, Compression Ratio.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3853209 Combined Effect of Heat Stimulation and Delayed Addition of Superplasticizer with Slag on Fresh and Hardened Property of Mortar
Authors: Faraidoon Rahmanzai, Mizuki Takigawa, Yu Bomura, Shigeyuki Date
Abstract:
To obtain the high quality and essential workability of mortar, different types of superplasticizers are used. The superplasticizers are the chemical admixture used in the mix to improve the fluidity of mortar. Many factors influenced the superplasticizer to disperse the cement particle in the mortar. Nature and amount of replaced cement by slag, mixing procedure, delayed addition time, and heat stimulation technique of superplasticizer cause the varied effect on the fluidity of the cementitious material. In this experiment, the superplasticizers were heated for 1 hour under 60 °C in a thermostatic chamber. Furthermore, the effect of delayed addition time of heat stimulated superplasticizers (SP) was also analyzed. This method was applied to two types of polycarboxylic acid based ether SP (precast type superplasticizer (SP2) and ready-mix type superplasticizer (SP1)) in combination with a partial replacement of normal Portland cement with blast furnace slag (BFS) with 30% w/c ratio. On the other hands, the fluidity, air content, fresh density, and compressive strength for 7 and 28 days were studied. The results indicate that the addition time and heat stimulation technique improved the flow and air content, decreased the density, and slightly decreased the compressive strength of mortar. Moreover, the slag improved the flow of mortar by increasing the amount of slag, and the effect of external temperature of SP on the flow of mortar was decreased. In comparison, the flow of mortar was improved on 5-minute delay for both kinds of SP, but SP1 has improved the flow in all conditions. Most importantly, the transition points in both types of SP appear to be the same, at about 5±1 min. In addition, the optimum addition time of SP to mortar should be in this period.
Keywords: Combined effect, delayed addition, heat stimulation, flow of mortar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847208 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.
Keywords: 3D modeling, UAS, cultural heritage, preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 705207 Computational Fluid Dynamics Analysis and Optimization of the Coanda Unmanned Aerial Vehicle Platform
Authors: Nigel Q. Kelly, Zaid Siddiqi, Jin W. Lee
Abstract:
It is known that using Coanda aerosurfaces can drastically augment the lift forces when applied to an Unmanned Aerial Vehicle (UAV) platform. However, Coanda saucer UAVs, which commonly use a dish-like, radially-extending structure, have shown no significant increases in thrust/lift force and therefore have never been commercially successful: the additional thrust/lift generated by the Coanda surface diminishes since the airstreams emerging from the rotor compartment expand radially causing serious loss of momentums and therefore a net loss of total thrust/lift. To overcome this technical weakness, we propose to examine a Coanda surface of straight, cylindrical design and optimize its geometry for highest thrust/lift utilizing computational fluid dynamics software ANSYS Fluent®. The results of this study reveal that a Coanda UAV configured with 4 sides of straight, cylindrical Coanda surface achieve an overall 45% increase in lift compared to conventional Coanda Saucer UAV configurations. This venture integrates with an ongoing research project where a Coanda prototype is being assembled. Additionally, a custom thrust-stand has been constructed for thrust/lift measurement.
Keywords: CFD, Coanda, Lift, UAV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 602206 The Application of FSI Techniques in Modeling of Realist Pulmonary Systems
Authors: Abdurrahim Bolukbasi, Hassan Athari, Dogan Ciloglu
Abstract:
The modeling lung respiratory system that has complex anatomy and biophysics presents several challenges including tissue-driven flow patterns and wall motion. Also, the pulmonary lung system because of that they stretch and recoil with each breath, has not static walls and structures. The direct relationship between air flow and tissue motion in the lung structures naturally prefers an FSI simulation technique. Therefore, in order to toward the realistic simulation of pulmonary breathing mechanics the development of a coupled FSI computational model is an important step. A simple but physiologically relevant three-dimensional deep long geometry is designed and fluid-structure interaction (FSI) coupling technique is utilized for simulating the deformation of the lung parenchyma tissue that produces airflow fields. The real understanding of respiratory tissue system as a complex phenomenon have been investigated with respect to respiratory patterns, fluid dynamics and tissue viscoelasticity and tidal breathing period.
Keywords: Lung deformation and mechanics, tissue mechanics, viscoelasticity, fluid-structure interactions, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2328205 Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes
Authors: Maíra O. Palm, Cintia Marangoni, Ozair Souza, Noeli Sellin
Abstract:
Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis – TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 ºC and 450 ºC, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 °C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation.
Keywords: Agro-industrial waste, biomass, briquettes, combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038204 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation
Abstract:
Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.
Keywords: Surface roughness, taguchi parameter design, turning center, turn-milling operations, vertical machining center.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523203 Safe, Effective, and Cost-Efficient Air Cleaning for Populated Rooms and Entire Buildings Based on the Disinfecting Power of Vaporized Hypochlorous Acid
Authors: D. Boecker, R. Breves, F. Herth, Z. Zhang, C. Bulitta
Abstract:
Pathogen-carrying aerosol particles are recognized as important infection carriers like those in the current Corona pandemic. This infection route is often underestimated yet represents the infection route that has been least systematically countered to date. Particularly, the transmission indoors is of the highest concern but current indoor safety measures (e.g.: distancing, masks, filters) provide only limited protection. Inhalation of hypochlorous acid (HOCl) containing aerosols may become an alternate route to attack the incubating microbes in-situ and so potentially lead to a reduction of symptoms of already infected individuals. We investigated a facility-wide air-disinfection concept utilizing the potential of vaporized HOCl to become a disinfecting agent for populated indoor atmospheres. Aerosolized bacterial microbes were used as surrogates for a viral contamination, particularly the enveloped coronavirus. For the room air purification tests we aerosolized bacterial suspensions into lab chambers preloaded with vaporized HOCl solutions. Concentration of ‘free active chlorine’ in the test chamber atmosphere was determined with a special gas sensor system (Draeger AG, Lübeck, Germany) controlling the amount of vaporized HOCl via an aerosolis® device (oji Europe GmbH, Nauen, Germany). We could confirm the disinfecting power of HOCl in suspensions and determined the high efficacy of vaporized HOCl to disinfect atmospheres of populated indoor places at safe and non-irritant levels.
Keywords: Hypochlorous acid, HOCl, indoor air cleaning, infection control, microbial air burden, protective atmosphere.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 429202 Left Ventricular Model to Study the Combined Viscoelastic, Heart Rate, and Size Effects
Authors: Elie H. Karam, Antoine B. Abche
Abstract:
It is known that the heart interacts with and adapts to its venous and arterial loading conditions. Various experimental studies and modeling approaches have been developed to investigate the underlying mechanisms. This paper presents a model of the left ventricle derived based on nonlinear stress-length myocardial characteristics integrated over truncated ellipsoidal geometry, and second-order dynamic mechanism for the excitation-contraction coupling system. The results of the model presented here describe the effects of the viscoelastic damping element of the electromechanical coupling system on the hemodynamic response. Different heart rates are considered to study the pacing effects on the performance of the left-ventricle against constant preload and afterload conditions under various damping conditions. The results indicate that the pacing process of the left ventricle has to take into account, among other things, the viscoelastic damping conditions of the myofilament excitation-contraction process. The effects of left ventricular dimensions on the hemdynamic response have been examined. These effects are found to be different at different viscoelastic and pacing conditions.Keywords: Myocardial sarcomere, cardiac pump, excitationcontractioncoupling, viscoelasicity
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1655201 A Comparison of Air Quality in Arid and Temperate Climatic Conditions – A Case Study of Leeds and Makkah
Authors: Turki M. Habeebullah, Said Munir, Karl Ropkins, Essam A. Morsy, Atef M. F. Mohammed, Abdulaziz R. Seroji
Abstract:
In this paper air quality conditions in Makkah and Leeds are compared. These two cities have totally different climatic conditions. Makkah climate is characterised as hot and dry (arid) whereas that of Leeds is characterised as cold and wet (temperate). This study uses air quality data from 2012 collected in Makkah, Saudi Arabia and Leeds, UK. The concentrations of all pollutants, except NO are higher in Makkah. Most notable, the concentrations of PM10 are much higher in Makkah than in Leeds. This is probably due to the arid nature of climatic conditions in Makkah and not solely due to anthropogenic emission sources, otherwise like PM10 some of the other pollutants, such as CO, NO, and SO2 would have shown much greater difference between Leeds and Makkah. Correlation analysis is performed between different pollutants at the same site and the same pollutants at different sites. In Leeds the correlation between PM10 and other pollutants is significantly stronger than in Makkah. Weaker correlation in Makkah is probably due to the fact that in Makkah most of the gaseous pollutants are emitted by combustion processes, whereas most of the PM10 is generated by other sources, such as windblown dust, re-suspension, and construction activities. This is in contrast to Leeds where all pollutants including PM10 are predominantly emitted by combustions, such as road traffic. Furthermore, in Leeds frequent rains wash out most of the atmospheric particulate matter and suppress re-suspension of dust. Temporal trends of various pollutants are compared and discussed. This study emphasises the role of climatic conditions in managing air quality, and hence the need for region-specific controlling strategies according to the local climatic and meteorological conditions.Keywords: Air pollution, climatic conditions, particulate matter, Makkah, Leeds.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2564200 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments
Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy CMeans methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc.).Keywords: Defuzzification, floating search, fuzzy clustering, Zernike moments.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050199 Numerical Investigation into Mixing Performance of Electrokinetically-Driven Power-Law Fluids in Microchannel with Patterned Trapezoid Blocks
Authors: Cha’o-Kuang Chen, Ching-Chang Cho
Abstract:
The study investigates the mixing performance of electrokinetically-driven power-law fluids in a microchannel containing patterned trapezoid blocks. The effects of the geometry parameters of the patterned trapezoid blocks and the flow behavior index in the power-law model on the mixing efficiency within the microchannel are explored. The results show that the mixing efficiency can be improved by increasing the width of the blocks and extending the length of upper surface of the blocks. In addition, the results show that the mixing efficiency increases with an increasing flow behavior index. Furthermore, it is shown that a heterogeneous patterning of the zeta potential on the upper surfaces of the trapezoid blocks prompts the formation of local flow recirculations, and therefore improves the mixing efficiency. Consequently, it is shown that the mixing performance improves with an increasing magnitude of the heterogeneous surface zeta potential.
Keywords: Non-Newtonian fluid, Power-law fluid, Electroosmotic flow, Passive mixer, Mixing, Micromixer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1515198 Characterization of Polycyclic Aromatic Hydrocarbons in Ambient Air PM2.5 in an Urban Site of Győr, Hungary
Authors: A. Szabó Nagy, J. Szabó, Zs. Csanádi, J. Erdős
Abstract:
In Hungary, the measurement of ambient PM10-bound polycyclic aromatic hydrocarbon (PAH) concentrations is great importance for a number of reasons related to human health, the environment and compliance with European Union legislation. However, the monitoring of PAHs associated with PM2.5 aerosol fraction is still incomplete. Therefore, the main aim of this study was to investigate the concentration levels of PAHs in PM2.5 urban aerosol fraction. PM2.5 and associated PAHs were monitored in November 2014 in an urban site of Győr (Northwest Hungary). The aerosol samples were collected every day for 24-hours over two weeks with a high volume air sampler provided with a PM2.5 cut-off inlet. The levels of 19 PAH compounds associated with PM2.5 aerosol fraction were quantified by a gas chromatographic method. Polluted air quality for PM2.5 (>25 g/m3) was indicated in 50% of the collected samples. The total PAHs concentrations ranged from 2.1 to 37.3 ng/m3 with the mean value of 12.4 ng/m3. Indeno(123-cd)pyrene (IND) and sum of three benzofluoranthene isomers were the most dominant PAH species followed by benzo(ghi)perylene and benzo(a)pyrene (BaP). Using BaP-equivalent approach on the concentration data of carcinogenic PAH species, BaP, and IND contributed the highest carcinogenic exposure equivalent (1.50 and 0.24 ng/m3 on average). A selected number of concentration ratios of specific PAH compounds were calculated to evaluate the possible sources of PAH contamination. The ratios reflected that the major source of PAH compounds in the PM2.5 aerosol fraction of Győr during the study period was fossil fuel combustion from automobiles.Keywords: Air, PM2.5, benzo(a)pyrene, polycyclic aromatic hydrocarbon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509197 Array Signal Processing: DOA Estimation for Missing Sensors
Authors: Lalita Gupta, R. P. Singh
Abstract:
Array signal processing involves signal enumeration and source localization. Array signal processing is centered on the ability to fuse temporal and spatial information captured via sampling signals emitted from a number of sources at the sensors of an array in order to carry out a specific estimation task: source characteristics (mainly localization of the sources) and/or array characteristics (mainly array geometry) estimation. Array signal processing is a part of signal processing that uses sensors organized in patterns or arrays, to detect signals and to determine information about them. Beamforming is a general signal processing technique used to control the directionality of the reception or transmission of a signal. Using Beamforming we can direct the majority of signal energy we receive from a group of array. Multiple signal classification (MUSIC) is a highly popular eigenstructure-based estimation method of direction of arrival (DOA) with high resolution. This Paper enumerates the effect of missing sensors in DOA estimation. The accuracy of the MUSIC-based DOA estimation is degraded significantly both by the effects of the missing sensors among the receiving array elements and the unequal channel gain and phase errors of the receiver.
Keywords: Array Signal Processing, Beamforming, ULA, Direction of Arrival, MUSIC
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020