Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32809
Study of the Effect of Rotation on the Deformation of a Flexible Blade Rotor

Authors: Aref Maalej, Marwa Fakhfakh, Wael Ben Amira

Abstract:

We present in this work a numerical investigation of fluid-structure interaction to study the elastic behavior of flexible rotors. The principal aim is to provide the effect of the aero/hydrodynamic parameters on the bending deformation of flexible rotors. This study is accomplished using the strong two-way fluid-structure interaction (FSI) developed by the ANSYS Workbench software. This method is used for coupling the fluid solver to the transient structural solver to study the elastic behavior of flexible rotors in water. In this study, we use a moderately flexible rotor modeled by a single blade with simplified rectangular geometry. In this work, we focus on the effect of the rotational frequency on the flapwise bending deformation. It is demonstrated that the blade deforms in the downstream direction and the amplitude of these deformations increases with the rotational frequencies. Also, from a critical frequency, the blade begins to deform in the upstream direction.

Keywords: Numerical simulation, flexible blade, fluid-structure interaction, ANSYS Workbench, flapwise deformation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19

References:


[1] J. F. Manwell, « Wind Energy Explained: Theory, Design and Application », 2002.
[2] C.-K. Kang, H. Aono, C. E. S. Cesnik and W. Shyy, « Effects of flexibility on the aerodynamic performance of flapping wings », Journal of Fluid Mechanics, vol. 689, p. 32‑74, déc. 2011, doi: 10.1017/jfm.2011.428.
[3] E. de Langre, A. Gutierrez and J. Cossé, « On the scaling of drag reduction by reconfiguration in plants », Comptes Rendus Mécanique, vol. 340, no 1, p. 35‑40, janv. 2012, doi: 10.1016/j.crme.2011.11.005.
[4] F. Gosselin, E. de Langre and B. Machado-Almeida, « Drag reduction of flexible plates by reconfiguration », Journal of Fluid Mechanics, vol. 650, p. 319‑341, mai 2010, doi: 10.1017/S0022112009993673.
[5] X. Zhang, Z. Wang and W. Li, « Structural optimization of H-type VAWT blade under fluid-structure interaction conditions », Journal of Vibroengineering, vol. 23, no 5, Art. no 5, 2021, doi: 10.21595/jve.2021.21766.
[6] M. Ali and M. Abid, « Self-similar behaviour of a rotor wake vortex core », Journal of Fluid Mechanics, vol. 740, p. R1, févr. 2014, doi: 10.1017/jfm.2013.636.
[7] K. Lee, Z. Huque, R. Kommalapati and S.-E. Han, « Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis », Renewable Energy, vol. 113, no C, p. 512‑531, 2017.
[8] K. Lee, Z. Huque, R. Kommalapati and S.-E. Han, « The Evaluation of Aerodynamic Interaction of Wind Blade Using Fluid Structure Interaction Method », JOCET, vol. 3, no 4, p. 270‑275, 2015, doi: 10.7763/JOCET.2015.V3.207.
[9] L. Wang, R. Quant and A. Kolios, « Fluid structure interaction modelling of horizontal-axis wind turbine blades based on CFD and FEA », Journal of Wind Engineering and Industrial Aerodynamics, vol. 158, p. 11‑25, nov. 2016, doi: 10.1016/j.jweia.2016.09.006.
[10] T. Bano, F. Hegner, M. Heinrich and R. Schwarze, « Investigation of Fluid-Structure Interaction Induced Bending for Elastic Flaps in a Cross Flow », Applied Sciences, vol. 10, no 18, Art. no 18, jan. 2020, doi: 10.3390/app10186177.
[11] D. Sederstrom, « Methods and Implementation of Fluid-Structure Interaction Modeling into an Industry-Accepted Design Tool », Electronic Theses and Dissertations, jan. 2016, (On line) Disponible sur: https://digitalcommons.du.edu/etd/1197