Search results for: steel fiber reinforced high strength self compacting concrete (SFRHSCC)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7699

Search results for: steel fiber reinforced high strength self compacting concrete (SFRHSCC)

7039 Tool Wear of Titanium/Tungsten/Silicon/Aluminum-based-coated end Mill Cutters in Millin Hardened Steel

Authors: Tadahiro Wada, Koji Iwamoto

Abstract:

In turning hardened steel, polycrystalline cubic boron nitride (cBN) compacts are widely used, due to their higher hardness and higher thermal conductivity. However, in milling hardened steel, fracture of cBN cutting tools readily occurs because they have poor fracture toughness. Therefore, coated cemented carbide tools, which have good fracture toughness and wear resistance, are generally widely used. In this study, hardened steel (ASTM D2, JIS SKD11, 60HRC) was milled with three physical vapor deposition (PVD)-coated cemented carbide end mill cutters in order to determine effective tool materials for cutting hardened steel at high cutting speeds. The coating films used were (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating films. (Ti,W,Si,Al)N is a new type of coating film. The inner layer of the (Ti,W)N/(Ti,W,Si)N and (Ti,W)N/(Ti,W,Si,Al)N coating system is (Ti,W)N coating film, and the outer layer is (Ti,W,Si)N and (Ti,W,Si,Al)N coating films, respectively. Furthermore, commercial (Ti,Al)N-based coating film was also used. The following results were obtained: (1) In milling hardened steel at a cutting speed of 3.33 m/s, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,W)N/(Ti,W,Si)N-coated tool. And, compared with the commercial (Ti,Al)N, the tool wear width of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool was smaller than that of the (Ti,Al)N-coated tool. (2) The tool wear of the (Ti,W)N/(Ti,W,Si,Al)N-coated tool increased with an increase in cutting speed. (3) The (Ti,W)N/(Ti,W,Si,Al)N-coated cemented carbide was an effective tool material for high-speed cutting below a cutting speed of 3.33 m/s.

Keywords: cutting, physical vapor deposition (PVD) coating system, hardened steel, tool wear

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2039
7038 A Comparison of Double Sided Friction Stir Welding in Air and Underwater for 6mm S275 Steel Plate

Authors: Philip Baillie, Stuart W. Campbell, Alexander M. Galloway, Stephen R. Cater, Norman A. McPherson

Abstract:

This study compared the mechanical and microstructural properties produced during friction stir welding (FSW) of S275 structural steel in air and underwater. Post weld tests assessed the tensile strength, micro-hardness, distortion, Charpy impact toughness and fatigue performance in each case. The study showed that there was no significant difference in the strength, hardness or fatigue life of the air and underwater specimens. However, Charpy impact toughness was shown to decrease for the underwater specimens and was attributed to a lower degree of recrystallization caused by the higher rate of heat loss experienced when welding underwater. Reduced angular and longitudinal distortion was observed in the underwater welded plate compared to the plate welded in air.

Keywords: Charpy impact toughness, distortion, fatigue, friction stir welding (FSW), micro-hardness, underwater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2719
7037 Long-Term Durability of Roller-Compacted Concrete Pavement

Authors: Jun Hee Lee, Young Kyu Kim, Seong Jae Hong, Chamroeun Chhorn, Seung Woo Lee

Abstract:

Roller-compacted concrete pavement (RCCP), an environmental friendly pavement of which load carry capacity benefitted from both hydration and aggregate interlock from roller compacting, demonstrated a superb structural performance for a relatively small amount of water and cement content. Even though an excellent structural performance can be secured, it is required to investigate roller-compacted concrete (RCC) under environmental loading and its long-term durability under critical conditions. In order to secure long-term durability, an appropriate internal air-void structure is required for this concrete. In this study, a method for improving the long-term durability of RCCP is suggested by analyzing the internal air-void structure and corresponding durability of RCC. The method of improving the long-term durability involves measurements of air content, air voids, and air-spacing factors in RCC that experiences changes in terms of type of air-entraining agent and its usage amount. This test is conducted according to the testing criteria in ASTM C 457, 672, and KS F 2456. It was found that the freezing-thawing and scaling resistances of RCC without any chemical admixture was quite low. Interestingly, an improvement of freezing-thawing and scaling resistances was observed for RCC with appropriate the air entraining (AE) agent content; Relative dynamic elastic modulus was found to be more than 80% for those mixtures. In RCC with AE agent mixtures, large amount of air was distributed within a range of 2% to 3%, and an air void spacing factor ranging between 200 and 300 μm (close to 250 μm, recommended by PCA) was secured. The long-term durability of RCC has a direct relationship with air-void spacing factor, and thus it can only be secured by ensuring the air void spacing factor through the inclusion of the AE in the mixture.

Keywords: RCCP, durability, air spacing factor, surface scaling resistance test, freezing and thawing resistance test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1145
7036 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: Wood waste ash, characterization, mechanical properties, finite element analysis, flexural behavior, bending tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
7035 Effect of Zr Addition on Mechanical Properties of Cr-Mo Plastic Mold Steels

Authors: Hyun-Ho Kim, Seok-Jae Lee, Oh-Yeon Lee

Abstract:

We investigated the effects of the additions of Zr and other alloying elements on the mechanical properties and microstructure in Cr-Mo plastic mold steels. The addition of alloying elements changed the microstructure of the normalized samples from the upper bainite to lower bainite due to the increased hardenability. The tempering temperature influenced the strength and hardness values, especially the phenomenon of 350oC embrittlement was observed. The alloy additions of Cr, Mo, and V improved the resistance to the temper embrittlement. The addition of Zr improved the tensile strength and yield strength, but the impact energy was sharply decreased. It may be caused by the formation of Zr-MnS inclusion and rectangular-shaped Zr inclusion due to the Zr addition.

Keywords: Inclusions, mechanical properties, plastic mold steel, Zr addition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2304
7034 Reducing Variation of Dyeing Process in Textile Manufacturing Industry

Authors: M. Zeydan, G. Toğa

Abstract:

This study deals with a multi-criteria optimization problem which has been transformed into a single objective optimization problem using Response Surface Methodology (RSM), Artificial Neural Network (ANN) and Grey Relational Analyses (GRA) approach. Grey-RSM and Grey-ANN are hybrid techniques which can be used for solving multi-criteria optimization problem. There have been two main purposes of this research as follows. 1. To determine optimum and robust fiber dyeing process conditions by using RSM and ANN based on GRA, 2. To obtain the best suitable model by comparing models developed by different methodologies. The design variables for fiber dyeing process in textile are temperature, time, softener, anti-static, material quantity, pH, retarder, and dispergator. The quality characteristics to be evaluated are nominal color consistency of fiber, maximum strength of fiber, minimum color of dyeing solution. GRA-RSM with exact level value, GRA-RSM with interval level value and GRA-ANN models were compared based on GRA output value and MSE (Mean Square Error) performance measurement of outputs with each other. As a result, GRA-ANN with interval value model seems to be suitable reducing the variation of dyeing process for GRA output value of the model.

Keywords: Artificial Neural Network, Grey Relational Analysis, Optimization, Response Surface Methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
7033 A Fiber Optic Interferometric Sensor for Dynamic Measurement

Authors: N. Sathitanon, S. Pullteap

Abstract:

An optical fiber Fabry-Perot interferometer (FFPI) is proposed and demonstrated for dynamic measurements in a mechanical vibrating target. A polishing metal with a low reflectance value adhered to a mechanical vibrator was excited via a function generator at various excitation frequencies. Output interference fringes were generated by modulating the reference and sensing signal at the output arm. A fringe-counting technique was used for interpreting the displacement information on the dedicated computer. The fiber interferometer has been found the capability of the displacement measurements of 1.28 μm – 96.01 μm. A commercial displacement sensor was employed as a reference sensor for investigating the measurement errors from the fiber sensor. A maximum percentage measurement error of approximately 1.59 % was obtained.

Keywords: Optical fiber sensors, dynamic displacement, fringe counting, reference displacement sensor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
7032 Determination of the Pullout/Holding Strength at the Taper-Trunnion Junction of Hip Implants

Authors: Obinna K. Ihesiulor, Krishna Shankar, Paul Smith, Alan Fien

Abstract:

Excessive fretting wear at the taper-trunnion junction (trunnionosis) apparently contributes to the high failure rates of hip implants. Implant wear and corrosion lead to the release of metal particulate debris and subsequent release of metal ions at the tapertrunnion surface. This results in a type of metal poisoning referred to as metallosis. The consequences of metal poisoning include; osteolysis (bone loss), osteoarthritis (pain), aseptic loosening of the prosthesis and revision surgery. Follow up after revision surgery, metal debris particles are commonly found in numerous locations. Background: A stable connection between the femoral ball head (taper) and stem (trunnion) is necessary to prevent relative motions and corrosion at the taper junction. Hence, the importance of component assembly cannot be over-emphasized. Therefore, the aim of this study is to determine the influence of head-stem junction assembly by press fitting and the subsequent disengagement/disassembly on the connection strength between the taper ball head and stem. Methods: CoCr femoral heads were assembled with High stainless hydrogen steel stem (trunnion) by Push-in i.e. press fit; and disengaged by pull-out test. The strength and stability of the two connections were evaluated by measuring the head pull-out forces according to ISO 7206-10 standards. Findings: The head-stem junction strength linearly increases with assembly forces.

Keywords: Wear, modular hip prosthesis, taper head-stem, force assembly, force disassembly.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
7031 An Investigation to Effective Parameters on the Damage of Dual Phase Steels by Acoustic Emission Using Energy Ratio

Authors: A. Fallahi, R. Khamedi

Abstract:

Dual phase steels (DPS)s have a microstructure consisting of a hard second phase called Martensite in the soft Ferrite matrix. In recent years, there has been interest in dual-phase steels, because the application of these materials has made significant usage; particularly in the automotive sector Composite microstructure of (DPS)s exhibit interesting characteristic mechanical properties such as continuous yielding, low yield stress to tensile strength ratios(YS/UTS), and relatively high formability; which offer advantages compared with conventional high strength low alloy steels(HSLAS). The research dealt with the characterization of damage in (DPS)s. In this study by review the mechanisms of failure due to volume fraction of martensite second phase; a new method is introduced to identifying the mechanisms of failure in the various phases of these types of steels. In this method the acoustic emission (AE) technique was used to detect damage progression. These failure mechanisms consist of Ferrite-Martensite interface decohesion and/or martensite phase fracture. For this aim, dual phase steels with different volume fraction of martensite second phase has provided by various heat treatment methods on a low carbon steel (0.1% C), and then AE monitoring is used during tensile test of these DPSs. From AE measurements and an energy ratio curve elaborated from the value of AE energy (it was obtained as the ratio between the strain energy to the acoustic energy), that allows detecting important events, corresponding to the sudden drops. These AE signals events associated with various failure mechanisms are classified for ferrite and (DPS)s with various amount of Vm and different martensite morphology. It is found that AE energy increase with increasing Vm. This increasing of AE energy is because of more contribution of martensite fracture in the failure of samples with higher Vm. Final results show a good relationship between the AE signals and the mechanisms of failure.

Keywords: Dual phase steel (DPS)s, Failure mechanisms, Acoustic Emission, Fracture strain energy to the acoustic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1869
7030 Best Timing for Capturing Satellite Thermal Images, Asphalt, and Concrete Objects

Authors: Toufic Abd El-Latif Sadek

Abstract:

The asphalt object represents the asphalted areas like roads, and the concrete object represents the concrete areas like concrete buildings. The efficient extraction of asphalt and concrete objects from one satellite thermal image occurred at a specific time, by preventing the gaps in times which give the close and same brightness values between asphalt and concrete, and among other objects. So that to achieve efficient extraction and then better analysis. Seven sample objects were used un this study, asphalt, concrete, metal, rock, dry soil, vegetation, and water. It has been found that, the best timing for capturing satellite thermal images to extract the two objects asphalt and concrete from one satellite thermal image, saving time and money, occurred at a specific time in different months. A table is deduced shows the optimal timing for capturing satellite thermal images to extract effectively these two objects.

Keywords: Asphalt, concrete, satellite thermal images, timing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1278
7029 Simulation Study on the Indoor Thermal Comfort with Insulation on Interior Structural Components of Super High-Rise Residences

Authors: Y. Wang, H. Fukuda, A. Ozaki, H. Sato

Abstract:

In this study, we discussed the effects on the thermal comfort of super high-rise residences that how effected by the high thermal capacity structural components. We considered different building orientations, structures, and insulation methods. We used the dynamic simulation software THERB (simulation of the thermal environment of residential buildings). It can estimate the temperature, humidity, sensible temperature, and heating/cooling load for multiple buildings. In the past studies, we examined the impact of air-conditioning loads (hereinafter referred to as AC loads) on the interior structural parts and the AC-usage patterns of super-high-rise residences. Super-high-rise residences have more structural components such as pillars and beams than do ordinary apartment buildings. The skeleton is generally made of concrete and steel, which have high thermal-storage capacities. The thermal-storage capacity of super-high-rise residences is considered to have a larger impact on the AC load and thermal comfort than that of ordinary residences. We show that the AC load of super-high-rise units would be reduced by installing insulation on the surfaces of interior walls that are not usually insulated in Japan.

Keywords: High-rise Residences, AC Load, Thermal Comfort, Thermal Storage, Insulation Patterns

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
7028 Experimental Study of Strength Recovery from Residual Strength on Kaolin Clay

Authors: Deepak R. Bhat, Netra P. Bhandery, Ryuichi Yatabe

Abstract:

Strength recovery effect from the residual-state of shear is not well address in scientific literature. Torsional ring shear strength recovery tests on kaolin clay using rest periods up to 30 days are performed at the effective normal stress 100kN/m2. Test results shows that recovered strength measured in the laboratory is slightly noticeable after rest period of 3 days, but recovered strength lost after very small shear displacement. This paper mainly focused on the strength recovery phenomenon from the residual strength of kaolin clay based on torsional ring shear test results. Mechanisms of recovered strength are also discussed.

Keywords: Kaolin clay, Residual strength, Strength recovery, Torsional ring shear test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446
7027 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: Additive manufacturing, carbon fiber, composite tooling, molds.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
7026 Improvement of Bit-Error-Rate in Optical Fiber Receivers

Authors: Hadj Bourdoucen, Amer Alhabsi

Abstract:

In this paper, a post processing scheme is suggested for improvement of Bit Error-Rate (BER) in optical fiber transmission receivers. The developed scheme has been tested on optical fiber systems operating with a non-return-to-zero (NRZ) format at transmission rates of up to 10Gbps. The transmission system considered is based on well known transmitters and receivers blocks operating at wavelengths in the region of 1550 nm using a standard single mode fiber. Performance of improved detected signals has been evaluated via the analysis of quality factor and computed bit error rates. Numerical simulations have shown a noticeable improvement of the system BER after implementation of the suggested post processing operation on the detected electrical signals.

Keywords: BER improvement, Optical fiber, transmissionperformance, NRZ.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2133
7025 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: WooYoung Jung, HoYoung Son

Abstract:

This study presented to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, hightech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: Composite material, GFRP, Infill Panel, Aftershock, Seismic Retrofitting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2267
7024 Microstructural and In-Vitro Characterization of Glass-Reinforced Hydroxyapatite Composites

Authors: Uma Batra, Seema Kapoor

Abstract:

Commercial hydroxyapatite (HA) was reinforced by adding 2, 5, and 10 wt % of 28.5%CaO-28.5%P2O5-38%Na2 O- 5%CaF2 based glass and then sintered. Although HA shows good biocompatibility with the human body, its applications are limited to non load-bearing areas and coatings due to its poor mechanical properties. These mechanical properties can be improved substantially with addition of glass ceramics by sintering. In this study, the effects of sintering hydroxyapatite with above specified phosphate glass additions are quantified. Each composition was sintered over a range of temperatures. Scanning electron microscopy and x-ray diffraction were used to characterize the microstructure and phases of the composites. The density, microhardness, and compressive strength were measured using Archimedes Principle, Vickers Microhardness Tester (at 0.98 N), and Instron Universal Testing Machine (cross speed of 0.5 mm/min) respectively. These results were used to indicate which composition provided suitable material for use in hard tissue replacement. Composites containing 10 wt % glass additions formed dense HA/TCP (tricalcium phosphate) composite materials possessing good compressive strength and hardness than HA. In-vitro bioactivity was assessed by evaluating changes in pH and Ca2+ ion concentration of SBF-simulated body fluid on immersion of these composites in it for two weeks.

Keywords: Bioglass, Composite, Hydroxyapatite, Sintering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
7023 Fatigue Crack Growth Behavior in Dissimilar Metal Weldment of Stainless Steel and Carbon Steel

Authors: K. Krishnaprasad, Raghu V. Prakash

Abstract:

Constant amplitude fatigue crack growth (FCG) tests were performed on dissimilar metal welded plates of Type 316L Stainless Steel (SS) and IS 2062 Grade A Carbon steel (CS). The plates were welded by TIG welding using SS E309 as electrode. FCG tests were carried on the Side Edge Notch Tension (SENT) specimens of 5 mm thickness, with crack initiator (notch) at base metal region (BM), weld metal region (WM) and heat affected zones (HAZ). The tests were performed at a test frequency of 10 Hz and at load ratios (R) of 0.1 & 0.6. FCG rate was found to increase with stress ratio for weld metals and base metals, where as in case of HAZ, FCG rates were almost equal at high ΔK. FCG rate of HAZ of stainless steel was found to be lowest at low and high ΔK. At intermediate ΔK, WM showed the lowest FCG rate. CS showed higher crack growth rate at all ΔK. However, the scatter band of data was found to be narrow. Fracture toughness (Kc) was found to vary in different locations of weldments. Kc was found lowest for the weldment and highest for HAZ of stainless steel. A novel method of characterizing the FCG behavior using an Infrared thermography (IRT) camera was attempted. By monitoring the temperature rise at the fast moving crack tip region, the amount of plastic deformation was estimated.

Keywords: Dissimilar metal weld, Fatigue Crack Growth, fracture toughness, Infrared thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2873
7022 Fatigue Properties of Steel Sheets Treated by Nitrooxidation

Authors: M. Maronek, J. Barta, P. Palcek, K. Ulrich

Abstract:

Low carbon deep drawing steel DC 01 according to EN 10130-91 was nitrooxidized in dissociated ammonia at 580°C/45 min and consequently oxidised at 380°C/5 min in vapour of distilled water. Material after nitrooxidation had 54 % increase of yield point, 34 % increase of strength and 10-times increased resistance to atmospheric corrosion in comparison to the material before nitrooxidation. The microstructure of treated material consisted of thin ε-phase layer connected to layer containing precipitated massive needle shaped Fe4N - γ' nitrides. This layer passed to a diffusion layer consisting of fine irregular shaped Fe16N2 - α'' nitrides regularly dispersed in ferritic matrix. Fatigue properties were examined under bending load with frequency of 20 kHz and sinusoidal symmetric cycle. The results confirmed positive influence of nitrooxidation on fatigue properties as fatigue limit of treated material was double in comparison to untreated material.

Keywords: steel sheet, fatigue, nitrooxidation, S-N diagram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
7021 Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel

Authors: Sanjeev Kumar, S. K. Nath

Abstract:

Proper selection of welding parameters for getting excellent weld is a challenge. HAZ simulation helps in identifying suitable welding parameters like heating rate, cooling rate, peak temperature, and energy input. In this study, the influence of weld thermal cycle of heat affected zone (HAZ) is simulated for Submerged Arc Welding (SAW) using Gleeble ® 3800 thermomechanical simulator. A (Micro-alloyed) MA steel plate of thickness 18 mm having yield strength 450MPa is used for making test specimens. Determination of the mechanical properties of weld simulated specimens including Charpy V-notch toughness and hardness is performed. Peak temperatures of 1300°C, 1150°C, 1000°C, 900°C, 800°C, heat energy input of 22KJ/cm and preheat temperatures of 30°C have been used with Rykalin-3D simulation model. It is found that the impact toughness (75J) is the best for the simulated HAZ specimen at the peak temperature 900ºC. For parent steel, impact toughness value is 26.8J at -50°C in transverse direction.

Keywords: HAZ Simulation, Mechanical Properties, Peak Temperature, Ship hull steel, and Weldability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
7020 Application of Adaptive Neuro-Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel ASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of PWHT experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556%, which confirms the high accuracy of the model.

Keywords: Prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, ANFIS, mean absolute percentage error.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 364
7019 Envelope Echo Signal of Metal Sphere in the Fresh Water

Authors: A. Mahfurdz, Sunardi, H. Ahmad

Abstract:

An envelope echo signal measurement is proposed in this paper using echo signal observation from the 200 kHz echo sounder receiver. The envelope signal without any object is compared with the envelope signal of the sphere. Two diameter size steel ball (3.1 cm & 2.2 cm) and two diameter size air filled stainless steel ball (4.8 cm & 7.4 cm) used in this experiment. The target was positioned about 0.5 m and 1.0 meter from the transducer face using nylon rope. From the echo observation in time domain, it is obviously shown that echo signal structure is different between the size, distance and type of metal sphere. The amplitude envelope voltage for the bigger sphere is higher compare to the small sphere and it confirm that the bigger sphere have higher target strength compare to the small sphere. Although the structure signal without any object are different compare to the signal from the sphere, the reflected signal from the tank floor increase linearly with the sphere size. We considered this event happened because of the object position approximately to the tank floor.

Keywords: echo sounder, target strength, sphere, echo signal

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1591
7018 Early Age Behavior of Wind Turbine Gravity Foundations

Authors: J. Modu, J. F. Georgin, L. Briançon, E. Antoinet

Abstract:

Wind turbine gravity foundations are designed to resist overturning failure through gravitational forces resulting from their masses. Owing to the relatively high volume of the cementitious material present, the foundations tend to suffer thermal strains and internal cracking due to high temperatures and temperature gradients depending on factors such as geometry, mix design and level of restraint. This is a result of a fully coupled mechanism commonly known as THMC (Thermo- Hygro - Mechanical - Chemical) coupling whose kinetics peak during the early age of concrete. The focus of this paper is therefore to present and offer a discussion on the temperature and humidity evolutions occurring in mass pours such as wind turbine gravity foundations based on sensor results obtained from the monitoring of an actual wind turbine foundation. To offer prediction of the evolutions, the formulation of a 3D Thermal-Hydro-Chemical (THC) model that is mainly derived from classical fundamental physical laws is also presented and discussed. The THC model can be mathematically fully coupled in Finite Element analyses. In the current study, COMSOL Multi-physics software was used to simulate the 3D THC coupling that occurred in the monitored wind turbine foundation to predict the temperature evolution at five different points within the foundation from time of casting.

Keywords: Early age behavior, reinforced concrete, THC 3D models, wind turbines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
7017 Development of a Double Coating Technique for Recycled Concrete Aggregates Used in Hot-mix Asphalt

Authors: Abbaas I. Kareem, H. Nikraz

Abstract:

The use of recycled concrete aggregates (RCAs) in hot-mix asphalt (HMA) production could ease natural aggregate shortage and maintain sustainability in modern societies. However, it was the attached cement mortar and other impurities that make the RCAs behave differently than high-quality aggregates. Therefore, different upgrading treatments were suggested to enhance its properties before being used in HMA production. Disappointedly, some of these treatments had caused degradation to some RCA properties. In order to avoid degradation, a coating technique is developed. This technique is based on combining of two main treatments, so it is named as double coating technique (DCT). Dosages of 0%, 20%, 40% and 60% uncoated RCA, RCA coated with Cement Slag Paste (CSP), and Double Coated Recycled Concrete Aggregates (DCRCAs) in place of granite aggregates were evaluated. The results indicated that the DCT improves strength and reduces water absorption of the DCRCAs compared with uncoated RCAs and RCA coated with CSP. In addition, the DCRCA asphalt mixtures exhibit stability values higher than those obtained for mixes made with granite aggregates, uncoated RCAs and RCAs coated with CSP. Also, the DCRCA asphalt mixtures require less bitumen to achieve the optimum bitumen content (OBC) than those manufactured with uncoated RCA and RCA-coated with CSP. Although the results obtained were encouraging, more testing is required in order to examine the effect of the DCT on performance properties of DCRCA- asphalt mixtures such as rutting and fatigue.

Keywords: Recycled concrete aggregates, hot mix asphalt, double coating technique, aggregate crashed value, Marshall parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 827
7016 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming

Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe

Abstract:

Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.

Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 918
7015 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges

Authors: Marcela Karmazínová, Michal Štrba, Milan Pilgr

Abstract:

The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations – so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.

Keywords: Bolt assembly connection, Cyclic loading, Failure mechanisms, Fatigue strength, Steel structure, Structural detail category, Temporary railway bridge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
7014 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272
7013 Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites

Authors: Shanawaz Patil, Mohamed Haneef, K. S. Narayanaswamy

Abstract:

In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl  by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 oC for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and  as cast hybrid composites.

Keywords: Beryl, graphene, heat treatment, mechanical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1029
7012 Analytical Solution of Stress Distribution ona Hollow Cylindrical Fiber of a Composite with Cylindrical Volume Element under Axial Loading

Authors: M. H. Kargarnovin, K. Momeni

Abstract:

The study of the stress distribution on a hollow cylindrical fiber placed in a composite material is considered in this work and an analytical solution for this stress distribution has been constructed. Finally some parameters such as fiber-s thickness and fiber-s length are considered and their effects on the distribution of stress have been investigated. For finding the governing relations, continuity equations for the axisymmetric problem in cylindrical coordinate (r,o,z) are considered. Then by assuming some conditions and solving the governing equations and applying the boundary conditions, an equation relates the stress applied to the representative volume element with the stress distribution on the fiber has been found.

Keywords: Axial Loading, Composite, Hollow CylindricalFiber, Stress Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
7011 Study on Connecting Method of Box Pontoons

Authors: Young-Jun You, Youn-Ju Jeong, Min-Su Park, Du-Ho Lee

Abstract:

Due to a lot of limited conditions, a large box type floating structure is inevitably constructed by connecting many pontoons. When a floating structure is made with concrete, concrete shear key with saw-teeth shape is often used to carry shear force. Match casting for the shear key and precise construction on a sea are very important for making separated two pontoons as one body but those are not easy work and may increase construction time and cost. To solve this problem, one-way shear key is studied in this paper for a connected part where there is some difference between upward and downward shear force. It has only one inclined plane and can resist shear force in one direction. Big shear force is resisted by concrete which forms an inclined plane and small shear force is resisted by steel bar. This system can reduce manufacturing cost of individual pontoon and construction time and cost for constructing a floating structure on a sea. In this paper, the feasibility study about one-way shear key system is performed by comparing with design example.

Keywords: Connection, floating container terminal, pontoon, pre-stressing, shear key.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3097
7010 Developing Three-Dimensional Digital Image Correlation Method to Detect the Crack Variation at the Joint of Weld Steel Plate

Authors: Ming-Hsiang Shih, Wen-Pei Sung, Shih-Heng Tung

Abstract:

The purposes of hydraulic gate are to maintain the functions of storing and draining water. It bears long-term hydraulic pressure and earthquake force and is very important for reservoir and waterpower plant. The high tensile strength of steel plate is used as constructional material of hydraulic gate. The cracks and rusts, induced by the defects of material, bad construction and seismic excitation and under water respectively, thus, the mechanics phenomena of gate with crack are probing into the cause of stress concentration, induced high crack increase rate, affect the safety and usage of hydroelectric power plant. Stress distribution analysis is a very important and essential surveying technique to analyze bi-material and singular point problems. The finite difference infinitely small element method has been demonstrated, suitable for analyzing the buckling phenomena of welding seam and steel plate with crack. Especially, this method can easily analyze the singularity of kink crack. Nevertheless, the construction form and deformation shape of some gates are three-dimensional system. Therefore, the three-dimensional Digital Image Correlation (DIC) has been developed and applied to analyze the strain variation of steel plate with crack at weld joint. The proposed Digital image correlation (DIC) technique is an only non-contact method for measuring the variation of test object. According to rapid development of digital camera, the cost of this digital image correlation technique has been reduced. Otherwise, this DIC method provides with the advantages of widely practical application of indoor test and field test without the restriction on the size of test object. Thus, the research purpose of this research is to develop and apply this technique to monitor mechanics crack variations of weld steel hydraulic gate and its conformation under action of loading. The imagines can be picked from real time monitoring process to analyze the strain change of each loading stage. The proposed 3-Dimensional digital image correlation method, developed in the study, is applied to analyze the post-buckling phenomenon and buckling tendency of welded steel plate with crack. Then, the stress intensity of 3-dimensional analysis of different materials and enhanced materials in steel plate has been analyzed in this paper. The test results show that this proposed three-dimensional DIC method can precisely detect the crack variation of welded steel plate under different loading stages. Especially, this proposed DIC method can detect and identify the crack position and the other flaws of the welded steel plate that the traditional test methods hardly detect these kind phenomena. Therefore, this proposed three-dimensional DIC method can apply to observe the mechanics phenomena of composite materials subjected to loading and operating.

Keywords: Welded steel plate, crack variation, three-dimensional Digital Image Correlation (DIC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579