Search results for: nano/micro actuator
320 Laser Ultrasonic Diagnostics and Acoustic Emission Technique for Examination of Rock Specimens under Uniaxial Compression
Authors: Elena B. Cherepetskaya, Vladimir A. Makarov, Dmitry V. Morozov, Ivan E. Sas
Abstract:
Laboratory studies of the stress-strain behavior of rocks specimens were conducted by using acoustic emission and laser-ultrasonic diagnostics. The sensitivity of the techniques allowed changes in the internal structure of the specimens under uniaxial compressive load to be examined at micro- and macro scales. It was shown that microcracks appear in geologic materials when the stress level reaches about 50% of breaking strength. Also, the characteristic stress of the main crack formation was registered in the process of single-stage compression of rocks. On the base of laser-ultrasonic echoscopy, 2D visualization of the internal structure of rocky soil specimens was realized, and the microcracks arising during uniaxial compression were registered.
Keywords: Acoustic emission, geomaterial, laser ultrasound, uniaxial compression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404319 Comparison between Lift and Drag-Driven VAWT Concepts on Low-Wind Site AEO
Authors: Marco Raciti Castelli, Ernesto Benini
Abstract:
This work presents a comparison between the Annual Energy Output (AEO) of two commercial vertical-axis wind turbines (VAWTs) for a low-wind urban site: both a drag-driven and a liftdriven concepts are examined in order to be installed on top of the new Via dei Giustinelli building, Trieste (Italy). The power-curves, taken from the product specification sheets, have been matched to the wind characteristics of the selected installation site. The influence of rotor swept area and rated power on the performance of the two proposed wind turbines have been examined in detail, achieving a correlation between rotor swept area, electrical generator size and wind distribution, to be used as a guideline for the calculation of the AEO.Keywords: Annual Energy Output, micro-generationtechnology, urban environment, Vertical-Axis Wind Turbine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6028318 A Design of Anisotropic Wet Etching System to Reduce Hillocks on Etched Surface of Silicon Substrate
Authors: Alonggot Limcharoen Kaeochotchuangkul, Pathomporn Sawatchai
Abstract:
This research aims to design and build a wet etching system, which is suitable for anisotropic wet etching, in order to reduce etching time, to reduce hillocks on the etched surface (to reduce roughness), and to create a 45-degree wall angle (micro-mirror). This study would start by designing a wet etching system. There are four main components in this system: an ultrasonic cleaning, a condenser, a motor and a substrate holder. After that, an ultrasonic machine was modified by applying a condenser to maintain the consistency of the solution concentration during the etching process and installing a motor for improving the roughness. This effect on the etch rate and the roughness showed that the etch rate increased and the roughness was reduced.
Keywords: Anisotropic wet etching, wet etching system, Hillocks, ultrasonic cleaning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 696317 Surface Modification by EUV laser Beam based on Capillary Discharge
Authors: O. Frolov, K. Kolacek, J. Schmidt, J. Straus, V. Prukner, A. Shukurov
Abstract:
Many applications require surface modification and micro-structuring of polymers. For these purposes is mainly used ultraviolet (UV) radiation from excimer lamps or excimer lasers. However, these sources have a decided disadvantage - degrading the polymer deep inside due to relatively big radiation penetration depth which may exceed 100 μm. In contrast, extreme ultraviolet (EUV) radiation is absorbed in a layer approximately 100 nm thick only. In this work, the radiation from a discharge-plasma EUV source (with wavelength 46.9 nm) based on a capillary discharge driver is focused with a spherical Si/Sc multilayer mirror for surface modification of PMMA sample or thin gold layer (thickness about 40 nm). It was found that the focused EUV laser beam is capable by one shot to ablate PMMA or layer of gold, even if the focus is significantly influenced by astigmatism.Keywords: ablation, capillary discharge, EUV laser, surface modification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1566316 The Physics of Gravity: A Hypothesis Based on Classical Physics
Authors: I. V. Kuzminov
Abstract:
The alternative hypothesis of the physics of gravitation is put forward in this paper. The hypothesis is constructed on the laws of classical physics. The process of expansion of the Universe explains the physics of gravity. The expansion of the Universe induces the resistance of gyroscopic forces of electron’s rotation. The second component of gravity forces is the resistance arising from the second derivative of linear expansion. This hypothesis does not reject the existing foundation of settlement, particularly as it is empirically constructed. The forces of gravitation and inertia share a common nature, which has been recognized before. The presented hypothesis does not criticize existing theories of gravitation; rather, it explores a separate theme. It is important to acknowledge that the expansion of the Universe exhibits isotropic characteristics. The proposed hypothesis provides a fundamental direction for further research. It is worth noting that this article does not aim to encompass all possible aspects of future investigations.
Keywords: Gyroscopic forces, the unity of the micro- and macrocosm, the expansion of the universe, the second derivative of expansion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 218315 Inverter Based Gain-Boosting Fully Differential CMOS Amplifier
Authors: Alpana Agarwal, Akhil Sharma
Abstract:
This work presents a fully differential CMOS amplifier consisting of two self-biased gain boosted inverter stages, that provides an alternative to the power hungry operational amplifier. The self-biasing avoids the use of external biasing circuitry, thus reduces the die area, design efforts, and power consumption. In the present work, regulated cascode technique has been employed for gain boosting. The Miller compensation is also applied to enhance the phase margin. The circuit has been designed and simulated in 1.8 V 0.18 µm CMOS technology. The simulation results show a high DC gain of 100.7 dB, Unity-Gain Bandwidth of 107.8 MHz, and Phase Margin of 66.7o with a power dissipation of 286 μW and makes it suitable candidate for the high resolution pipelined ADCs.
Keywords: CMOS amplifier, gain boosting, inverter-based amplifier, self-biased inverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2617314 Piezoelectric Approach on Harvesting Acoustic Energy
Authors: Khin Fai Chen, Jee-Hou Ho, Eng Hwa Yap
Abstract:
An Acoustic Micro-Energy Harvester (AMEH) is developed to convert wasted acoustical energy into useful electrical energy. AMEH is mathematically modeled using Lumped Element Modelling (LEM) and Euler-Bernoulli beam (EBB) modelling. An experiment is designed to validate the mathematical model and assess the feasibility of AMEH. Comparison of theoretical and experimental data on critical parameter value such as Mm, Cms, dm and Ceb showed the variances are within 1% to 6%, which is reasonably acceptable. Then, AMEH undergoes bandwidth tuning for performance optimization. The AMEH successfully produces 0.9V/(m/s^2) and 1.79μW/(m^2/s^4) at 60Hz and 400kΩ resistive load which only show variances about 7% compared to theoretical data. At 1g and 60Hz resonance frequency, the averaged power output is about 2.2mW which fulfilled a range of wireless sensors and communication peripherals power requirements. Finally, the design for AMEH is assessed, validated and deemed as a feasible design.Keywords: Piezoelectric, acoustic, energy harvester, thermoacoustic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3274313 Temperature-Dependence of Hardness and Wear Resistance of Stellite Alloys
Authors: S. Kapoor, R. Liu, X. J. Wu, M. X. Yao
Abstract:
A group of Stellite alloys are studied in consideration of temperature effects on their hardness and wear resistance. The hardness test is conducted on a micro-hardness tester with a hot stage equipped that allows heating the specimen up to 650°C. The wear resistance of each alloy is evaluated using a pin-on-disc tribometer with a heating furnace built-in that provides the temperature capacity up to 450°C. The experimental results demonstrate that the hardness and wear resistance of Stellite alloys behave differently at room temperature and at high temperatures. The wear resistance of Stellite alloys at room temperature mainly depends on their carbon content and also influenced by the tungsten content in the alloys. However, at high temperatures the wear mechanisms of Stellite alloys become more complex, involving multiple factors. The relationships between chemical composition, microstructure, hardness and wear resistance of these alloys are studied, with focus on temperature effect on these relations.Keywords: Stellite alloy, temperature, hardness, wear resistance
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6455312 Development of Soft-Core System for Heart Rate and Oxygen Saturation
Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik
Abstract:
This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.
Keywords: Heart rate, NIOS II, Oxygen Saturation, photoplethysmography, soft-core, SOPC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393311 DC-Link Voltage Control of DC-DC Boost Converter-Inverter System with PI Controller
Authors: Thandar Aung, Tun Lin Naing
Abstract:
In this paper, the DC-link voltage control of DC-DC boost converter–inverter system is proposed. The mathematical model is developed from four different sub-circuits that depended on the switch positions. The developed differential equations are combined to develop the dynamic model. Transfer function is generated from the switched function model. Fluctuation of DC-link voltage causes connected loads malfunction. For this problem, a kind of traditional controller, the PI controller is applied to achieve constant DC-link voltage. The PI controller gains are obtained based on transfer function step response. The simulation work has been studied by using MATLAB/Simulink software and hardware prototype is implemented with a low-cost microcontroller Arduino Nano. Experimental results are collected by using ArduinoIO library package. Closed-loop DC-link voltage control system is tested with various line and load disturbances. It is found that the experimental results give equal responses with the simulation results.Keywords: ArduinoIO library package, boost converter-inverter system, low cost microcontroller, PI controller, switched function model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1417310 Assessment of Drug Delivery Systems from Molecular Dynamic Perspective
Authors: M. Rahimnejad, B. Vahidi, B. Ebrahimi Hoseinzadeh, F. Yazdian, P. Motamed Fath, R. Jamjah
Abstract:
In this study, we developed and simulated nano-drug delivery systems efficacy in compare to free drug prescription. Computational models can be utilized to accelerate experimental steps and control the experiments high cost. Molecular dynamics simulation (MDS), in particular NAMD was utilized to better understand the anti-cancer drug interaction with cell membrane model. Paclitaxel (PTX) and dipalmitoylphosphatidylcholine (DPPC) were selected for the drug molecule and as a natural phospholipid nanocarrier, respectively. This work focused on two important interaction parameters between molecules in terms of center of mass (COM) and van der Waals interaction energy. Furthermore, we compared the simulation results of the PTX interaction with the cell membrane and the interaction of DPPC as a nanocarrier loaded by the drug with the cell membrane. The molecular dynamic analysis resulted in low energy between the nanocarrier and the cell membrane as well as significant decrease of COM amount in the nanocarrier and the cell membrane system during the interaction. Thus, the drug vehicle showed notably better interaction with the cell membrane in compared to free drug interaction with the cell membrane.
Keywords: Anti-cancer drug, center of Mass, interaction energy, molecular dynamics simulation, nanocarrier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1322309 Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.
Keywords: MgFe2O4 nanoparticles, synthesis, gas sensing properties, X ray differentiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 202308 Photocatalytic Oxidation of Gaseous Formaldehyde Using the TiO2 Coated SF Filter
Authors: Janjira Triped, Wipada Sanongraj, Wipawee Khamwichit
Abstract:
The research work covered in this study includes the morphological structure and optical properties of TiO2-coated silk fibroin (SF) filters at 2.5% wt. TiO2/vol. PVA solution. SEM micrographs revealed the fibrous morphology of the TiO2-coated SF filters. An average diameter of the SF fiber was estimated to be approximately 10µm. Also, it was confirmed that TiO2 can be adhered more on SF filter surface at higher TiO2 dosages. The activity of semiconductor materials was studied by UV-VIS spectrophotometer method. The spectral data recorded shows the strong cut off at 390 nm. The calculated band-gap energy was about 3.19 eV. The photocatalytic activity of the filter was tested for gaseous formaldehyde removal in a modeling room with the total volume of 2.66 m3. The highest removal efficiency (54.72 ± 1.75%) was obtained at the initial formaldehyde concentration of about 5.00 ± 0.50ppm.
Keywords: Photocatalytic oxidation process, Formaldehyde (HCHO), Silk fibroin (SF), Titanium dioxide (TiO2).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3231307 The High Strength Biocompatible Wires of Commercially Pure Titanium
Abstract:
COMTES FHT has been active in a field of research and development of high-strength wires for quite some time. The main material was pure titanium. The primary goal of this effort is to develop a continuous production process for ultrafine and nanostructured materials with the aid of severe plastic deformation (SPD). This article outlines mechanical and microstructural properties of the materials and the options available for testing the components made of these materials. Ti Grade 2 and Grade 4 wires are the key products of interest. Ti Grade 2 with ultrafine to nano-sized grain shows ultimate strength of up to 1050 MPa. Ti Grade 4 reaches ultimate strengths of up to 1250 MPa. These values are twice or three times as higher as those found in the unprocessed material. For those fields of medicine where implantable metallic materials are used, bulk ultrafine to nanostructured titanium is available. It is manufactured by SPD techniques. These processes leave the chemical properties of the initial material unchanged but markedly improve its final mechanical properties, in particular, the strength. Ultrafine to nanostructured titanium retains all the significant and, from the biological viewpoint, desirable properties that are important for its use in medicine, i.e. those properties which made pure titanium the preferred material also for dental implants.Keywords: CONFORM SPD, ECAP, titanium, rotary swaging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 987306 Oncogene Identification using Filter based Approaches between Various Cancer Types in Lung
Authors: Michael Netzer, Michael Seger, Mahesh Visvanathan, Bernhard Pfeifer, Gerald H. Lushington, Christian Baumgartner
Abstract:
Lung cancer accounts for the most cancer related deaths for men as well as for women. The identification of cancer associated genes and the related pathways are essential to provide an important possibility in the prevention of many types of cancer. In this work two filter approaches, namely the information gain and the biomarker identifier (BMI) are used for the identification of different types of small-cell and non-small-cell lung cancer. A new method to determine the BMI thresholds is proposed to prioritize genes (i.e., primary, secondary and tertiary) using a k-means clustering approach. Sets of key genes were identified that can be found in several pathways. It turned out that the modified BMI is well suited for microarray data and therefore BMI is proposed as a powerful tool for the search for new and so far undiscovered genes related to cancer.
Keywords: lung cancer, micro arrays, data mining, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754305 New Dynamic Constitutive Model for OFHC Copper Film
Authors: Jin Sung Kim, Hoon Huh
Abstract:
The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson−Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening.
Keywords: Rate dependent material properties, Dynamic constitutive model, OFHC copper film, Strain rate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2418304 Exploring the Influences on Entrainment of Serpentines by Grinding and Reagents
Authors: M. Tang, S. M. Wen, D. W. Liu
Abstract:
This paper presents the influences on the entrainment of serpentines by grinding and reagents during copper–nickel sulfide flotation. The previous bench flotation tests were performed to extract the metallic values from the ore in Yunnan Mine, China and the relatively satisfied results with recoveries of 86.92% Cu, 54.92% Ni, and 74.73% Pt+Pd in the concentrate were harvested at their grades of 4.02%, 3.24% and 76.61 g/t, respectively. However, the content of MgO in the concentrate was still more than 19%. Micro-flotation tests were conducted with the objective of figuring out the influences on the entrainment of serpentines into the concentrate by particle size, flocculants or depressants and collectors, as well as visual observations in suspension by OLYMPUS camera. All the tests results pointed to the presences of both “entrapped-in” serpentines and its coating on the hydrophobic flocs resulted from strong collectors (combination of butyl xanthate, butyl ammonium dithophosphate, even after adding carboxymethyl cellulose as effective depressant. And fine grinding may escalate the entrainment of serpentines in the concentrate.Keywords: Serpentine, copper and nickel sulfides, flotation, entrainment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1479303 Development of a New Polymeric Material with Controlled Surface Micro-Morphology Aimed for Biosensors Applications
Authors: Elham Farahmand, Fatimah Ibrahim, Samira Hosseini, Ivan Djordjevic, Leo. H. Koole
Abstract:
Compositions of different molar ratios of polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA) were synthesized via free-radical polymerization. Polymer coated surfaces have been produced on silicon wafers. Coated samples were analyzed by atomic force microscopy (AFM). The results have shown that the roughness of the surfaces have increased by increasing the molar ratio of monomer methacrylic acid (MAA). This study reveals that the gradual increase in surface roughness is due to the fact that carboxylic functional groups have been generated by MAA segments. Such surfaces can be desirable platforms for fabrication of the biosensors for detection of the viruses and diseases.
Keywords: Polymethylmethacrylate-co-methacrylic acid (PMMA-co-MAA), Polymeric material, Atomic Force Microscopy, roughness, carboxylic functional groups.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2126302 FHOJ: A New Java Benchmark Framework
Authors: Vinh Quang La, Dirk Jansen
Abstract:
There are some existing Java benchmarks, application benchmarks as well as micro benchmarks or mixture both of them,such as: Java Grande, Spec98, CaffeMark, HBech, etc. But none of them deal with behaviors of multi tasks operating systems. As a result, the achieved outputs are not satisfied for performance evaluation engineers. Behaviors of multi tasks operating systems are based on a schedule management which is employed in these systems. Different processes can have different priority to share the same resources. The time is measured by estimating from applications started to it is finished does not reflect the real time value which the system need for running those programs. New approach to this problem should be done. Having said that, in this paper we present a new Java benchmark, named FHOJ benchmark, which directly deals with multi tasks behaviors of a system. Our study shows that in some cases, results from FHOJ benchmark are far more reliable in comparison with some existing Java benchmarks.
Keywords: Java Virtual Machine, Java benchmark, FHOJ framework.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529301 Implementation the Average Input Current Mode Control of Two-Phase Interleaved Boost Converter Using Low-Cost Microcontroller
Authors: Yin Yin Phyo, Tun Lin Naing
Abstract:
In this paper, the average input current mode control is proposed for two-phase interleaved boost converter with two separate input inductors operating in continuous conduction mode (CCM). The required mathematical model is obtained from the equivalent circuits of its different four modes of operation. The small ripple approximation is derived to find the transfer functions from dynamic model using switching function. In average input current mode control, the inner current loop and outer voltage loop are designed with PI controller using bode analysis. Anti-windup structure is applied for PI controllers in control system. Moreover, the simulation work is carried out by MATLAB/Simulink. And, the hardware prototype is implemented by using low-cost microcontroller Arduino Nano. Finally, the laboratory prototype, available from the local market, is constructed to validate the mathematical model. The results show that the output voltage response is the faster rise time and settling time with acceptable overshoot.
Keywords: Average input current mode control, interleaved boost converter, low-cost microcontroller, PI controller, switching function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1352300 Effect of Two Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae var. acridum on the Haemolymph of the Desert Locust Schistocerca gregaria
Authors: Fatima Zohra Bissaad, Farid Bounaceur, Nassima Behidj, Nadjiba Chebouti, Fatma Halouane, Bahia Doumandji-Mitiche
Abstract:
Effect of Beauveria bassiana and Metarhizium anisopliae var. acridum on the 5th instar nymphs of Schistocerca gregaria was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 µg/100 ml of haemolymph in the control and M. anisopliae var. acridum, and B. bassiana based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9th day after its application.
Keywords: Beauveria bassiana, haemolymph picture, haemolymph protein, Metarhizium anisopliae var. acridum, Schistocerca gregaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466299 Experimental Evaluation of Mobility Anchor Point Selection Scheme in Hierarchical Mobile IPv6
Authors: Zulkeflee Kusin, Mohamad Shanudin Zakaria
Abstract:
Hierarchical Mobile IPv6 (HMIPv6) was designed to support IP micro-mobility management in the Next Generation Networks (NGN) framework. The main design behind this protocol is the usage of Mobility Anchor Point (MAP) located at any level router of network to support hierarchical mobility management. However, the distance MAP selection in HMIPv6 causes MAP overloaded and increase frequent binding update as the network grows. Therefore, to address the issue in designing MAP selection scheme, we propose a dynamic load control mechanism integrates with a speed detection mechanism (DMS-DLC). From the experimental results we obtain that the proposed scheme gives better distribution in MAP load and increase handover speed.Keywords: Dynamic load control, HMIPv6, Mobility AnchorPoint, MAP selection scheme
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1801298 Synthesis of Dispersion-Compensating Triangular Lattice Index-Guiding Photonic Crystal Fibers Using the Directed Tabu Search Method
Authors: F. Karim
Abstract:
In this paper, triangular lattice index-guiding photonic crystal fibers (PCFs) are synthesized to compensate the chromatic dispersion of a single mode fiber (SMF-28) for an 80 km optical link operating at 1.55 µm, by using the directed tabu search algorithm. Hole-to-hole distance, circular air-hole diameter, solid-core diameter, ring number and PCF length parameters are optimized for this purpose. Three Synthesized PCFs with different physical parameters are compared in terms of their objective functions values, residual dispersions and compensation ratios.
Keywords: Triangular lattice index-guiding photonic crystal fiber, dispersion compensation, directed tabu search, synthesis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1308297 Influence of Nanozeolite Particles on Improvement of Clayey Soil
Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand
Abstract:
The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.
Keywords: Nanozeolite particles, nanobentonite particles, clayey soil, unconfined compression stress, specific surface area, cation exchange capacity, Atterberg limits.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 874296 On the Steady-State Performance Characteristics of Finite Hydrodynamic Journal Bearing under Micro-Polar Lubrication with Turbulent Effect
Authors: Subrata Das, Sisir Kumar Guha
Abstract:
The objective of the present paper is to theoretically investigate the steady-state performance characteristics of journal bearing of finite width, operating with micropolar lubricant in a turbulent regime. In this analysis, the turbulent shear stress coefficients are used based on the Constantinescu’s turbulent model suggested by Taylor and Dowson with the assumption of parallel and inertia-less flow. The numerical solution of the modified Reynolds equation has yielded the distribution of film pressure which determines the static performance characteristics in terms of load capacity, attitude angle, end flow rate and frictional parameter at various values of eccentricity ratio, non-dimensional characteristics length, coupling number and Reynolds number.
Keywords: Hydrodynamic lubrication, steady-state, micropolar lubricant, turbulent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748295 Micromechanical Modeling of Fiber-Matrix Debonding in Unidirectional Composites
Authors: M. Palizvan, M. T. Abadi, M. H. Sadr
Abstract:
Due to variations in damage mechanisms in the microscale, the behavior of fiber-reinforced composites is nonlinear and difficult to model. To make use of computational advantages, homogenization method is applied to the micro-scale model in order to minimize the cost at the expense of detail of local microscale phenomena. In this paper, the effective stiffness is calculated using the homogenization of nonlinear behavior of a composite representative volume element (RVE) containing fiber-matrix debonding. The damage modes for the RVE are considered by using cohesive elements and contacts for the cohesive behavior of the interface between fiber and matrix. To predict more realistic responses of composite materials, different random distributions of fibers are proposed besides square and hexagonal arrays. It was shown that in some cases, there is quite different damage behavior in different fiber distributions. A comprehensive comparison has been made between different graphs.
Keywords: Homogenization, cohesive zone model, fiber-matrix debonding, RVE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 787294 Studies of Interfacial Microstructure and Mechanical Properties on Dissimilar Sheet Metal Combination Joints Using Laser Beam Welding
Authors: K. Kalaiselvan, A. Elango
Abstract:
Laser beam welding of dissimilar sheet metal combinations such as Ti/Al, SS/Al and Cu/Al are increasingly demanded due to high energy densities with less fusion and heat affected zones. A good weld joint strength involves combinations of dissimilar metals and the formation of solid solution in the weld pool. Many metal pairs suffer from significant intermetallic phase formation during welding which greatly reduces their strength. The three different sheet metal mentioned above is critically reviewed and phase diagram for the combinations are given. The aim of this study is to develop an efficient metal combinations and the influence on their interfacial characteristics. For that the following parameters such as weld geometry, residual distortion, micro hardness, microstructure and mechanical properties are analyzed systematically.
Keywords: Laser Beam Welding (LBW), dissimilar metals, Ti/Al, SS/Al and Cu/Al sheets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2981293 Design and Implementation of a Control System for a Walking Robot with Color Sensing and Line Following Using PIC and ATMEL Microcontrollers
Authors: Ibraheem K. Ibraheem
Abstract:
The aim of this research is to design and implement line-tracking mobile robot. The robot must follow a line drawn on the floor with different color, avoids hitting moving object like another moving robot or walking people and achieves color sensing. The control system reacts by controlling each of the motors to keep the tracking sensor over the middle of the line. Proximity sensors used to avoid hitting moving objects that may pass in front of the robot. The programs have been written using micro c instructions, then converted into PIC16F887 ATmega48/88/168 microcontrollers counterparts. Practical simulations show that the walking robot accurately achieves line following action and exactly recognizes the colors and avoids any obstacle in front of it.
Keywords: Color sensing, H-bridge, line following, mobile robot, PIC microcontroller, obstacle avoidance, phototransistor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3248292 Automatic Product Identification Based on Deep-Learning Theory in an Assembly Line
Authors: Fidel Lòpez Saca, Carlos Avilés-Cruz, Miguel Magos-Rivera, José Antonio Lara-Chávez
Abstract:
Automated object recognition and identification systems are widely used throughout the world, particularly in assembly lines, where they perform quality control and automatic part selection tasks. This article presents the design and implementation of an object recognition system in an assembly line. The proposed shapes-color recognition system is based on deep learning theory in a specially designed convolutional network architecture. The used methodology involve stages such as: image capturing, color filtering, location of object mass centers, horizontal and vertical object boundaries, and object clipping. Once the objects are cut out, they are sent to a convolutional neural network, which automatically identifies the type of figure. The identification system works in real-time. The implementation was done on a Raspberry Pi 3 system and on a Jetson-Nano device. The proposal is used in an assembly course of bachelor’s degree in industrial engineering. The results presented include studying the efficiency of the recognition and processing time.Keywords: Deep-learning, image classification, image identification, industrial engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 759291 Efficiency Improvement of Wireless Power Transmission for Bio-Implanted Devices
Authors: Saad Mutashar, M. A. Hannan, S. A. Samad, A. Hussain
Abstract:
This paper deals with the modified wireless power transmission system for biomedical implanted devices. The system consists of efficient class-E power amplifier and inductive power links based on spiral circular transmitter and receiver coils. The model of the class-E power amplifier operated with 13.56 MHz is designed, discussed and analyzed in which it is achieved 87.2% of efficiency. The inductive coupling method is used to achieve link efficiency up to 73% depending on the electronic remote system resistance. The improved system powered with 3.3 DC supply and the voltage across the transmitter side is 40 V whereas, cross the receiver side is 12 V which is rectified to meet the implanted micro-system circuit requirements. The system designed and simulated by NI MULTISIM 11.02.
Keywords: Wireless Transmission, inductive coupling, implanted devices, class-E power amplifier, coils design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3148