Search results for: Metal and metal oxide sorbents
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 993

Search results for: Metal and metal oxide sorbents

333 Wind-tunnel Measurement of the Drag-reducing Effect of Compliant Coating

Authors: Inwon Lee, Victor M. Kulik, Andrey V. Boiko, Ho Hwan Chun

Abstract:

A specially designed flat plate was mounted vertically over the axial line in the wind tunnel of the Aerospace Department of the Pusan National University. The plate is 2 m long, 0.8 m high and 8 cm thick. The measurements were performed in velocity range from 15 to 60 m/s. A sand paper turbulizer was placed close to the plate nose to provide fully developed turbulent boundary layer over the most part of the plate. Strain balances were mounted in the trailing part of the plate to measure the skin friction drag over removable insertions of 0.55×0.25m2 size. A set of the insertions was designed and manufactured: 3mm thick polished metal surface and three compliant surfaces. The compliant surfaces were manufactured of a silicone rubber Silastic® S2 (Dow Corning company). To modify the viscoelastic properties of the rubber, its composition was varied: 90% of the rubber + 10% catalyst (standard), 92.5% + 7.5% (weak), 85% + 15% (strong). Modulus of elasticity and the loss tangent were measured accurately for these materials in the frequency range from 40 Hz to 3 KHz using the unique proposed technique.

Keywords: boundary layer, compliant coating, drag reduction, hot wire, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1686
332 Development of a Water-Jet Assisted Underwater Laser Cutting Process

Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath

Abstract:

We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.

Keywords: Laser, underwater cutting, water-jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4660
331 Comprehensive Characteristics of the Municipal Solid Waste Generated in the Faculty of Engineering, UKM

Authors: A. Salsabili, M.Aghajani Mir, S.Saheri, Noor Ezlin Ahmad Basri

Abstract:

The main aims in this research are to study the solid waste generation in the Faculty of Engineering and Built Environment in the UKM and at the same time to determine composition and some of the waste characteristics likewise: moisture content, density, pH and C/N ratio. For this purpose multiple campaigns were conducted to collect the wastes produced in all hostels, faculties, offices and so on, during 24th of February till 2nd of March 2009, measure and investigate them with regard to both physical and chemical characteristics leading to highlight the necessary management policies. Research locations are Faculty of Engineering and the Canteen nearby that. From the result gained, the most suitable solid waste management solution will be proposed to UKM. The average solid waste generation rate in UKM is 203.38 kg/day. The composition of solid waste generated are glass, plastic, metal, aluminum, organic and inorganic waste and others waste. From the laboratory result, the average moisture content, density, pH and C/N ratio values from the solid waste generated are 49.74%, 165.1 kg/m3, 5.3, and 7:1 respectively. Since, the food waste (organic waste) were the most dominant component, around 62% from the total waste generated hence, the most suitable solid waste management solution is composting.

Keywords: Solid Waste, Waste Management, Characterizationand Composition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3596
330 Characterising Effects of Applied Loads on the Mechanical Properties of Formed Steel Sheets

Authors: Esther T. Akinlabi, Stephen A. Akinlabi

Abstract:

The purpose of this research study is to investigate the manner in which various loads affect the mechanical properties of the formed mild steel plates. The investigation focuses on examining the cross-sectional area of the metal plate at the centre of the formed mild steel plate. Six mild steel plates were deformed with different loads. The loads applied on the plates had a magnitude of 5 kg, 10 kg, 15 kg, 20 kg, 25 kg and 30 kg. The radius of the punching die was 120 mm and the loads were applied at room temperature. The investigations established that the applied load causes the Vickers microhardness at the cross-sectional area of the plate to increase due to strain hardening. Hence, the percentage increase of the hardness due to the load was found to be directly proportional to the increase in the load. Furthermore, the tensile test results for the parent material showed that the average Ultimate Tensile Strength (UTS) for the three samples was 308 MPa while the average Yield Strength and Percentage Elongation were 227 MPa and 38 % respectively. Similarly, the UTS of the formed components increased after the deformation of the plate, as such it can be concluded that the forming loads alter the mechanical properties of the materials by improving and strengthening the material properties.

Keywords: Applied load, forming and Mechanical Properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
329 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: Ionic liquid, response surface methodology, solvent extraction, zinc acetate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1152
328 Design of Coherent Thermal Emission Source by Excitation of Magnetic Polaritons between Metallic Gratings and an Opaque Metallic Film

Authors: Samah G. Babiker, Yong Shuai, Mohamed Osman Sid-Ahmed, Ming Xie, Mu Lei

Abstract:

The present paper studies a structure consisting of a periodic metallic grating, coated on a dielectric spacer atop an opaque metal substrate, using coherent thermal emission source in the infrared region. It has been theoretically demonstrated that by exciting surface magnetic polaritons between metallic gratings and an opaque metallic film, separated by a dielectric spacer, large emissivity peaks are almost independent of the emission angle and they can be achieved at the resonance frequencies. The reflectance spectrum of the proposed structure shows two resonances dip, which leads to a sharp emissivity peak. The relations of the reflection and absorption properties and the influence of geometric parameters on the radiative properties are investigated by rigorous coupled-wave analysis (RCWA). The proposed structure can be easily constructed, using micro/nanofabrication and can be used as the coherent thermal emission source.

Keywords: Coherent thermal emission, Polartons, Reflectance, Resonance frequency, Rigorous coupled wave analysis (RCWA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168
327 Developing Cu-Mesoporous TiO2 Cooperated with Ozone Assistance and Online- Regeneration System for Acid Odor Removal in All Weather

Authors: Yuchih Lin, Chung-Liang Chang, Hong-Yi Cao, Sheng-Hsuan Hsiao

Abstract:

Cu-mesoporous TiO2 is developed for removal acid odor cooperated with ozone assistance and online- regeneration system with/without UV irradiation (all weather) in study. The results showed that Cu-mesoporous TiO2 present the desirable adsorption efficiency of acid odor without UV irradiation, due to the larger surface area, pore sizeand the additional absorption ability provided by Cu. In the photocatalysis process, the material structure also benefits Cu-mesoporous TiO2 to perform the more outstanding efficiency on degrading acid odor. Cu also postponed the recombination of electron-hole pairs excited from TiO2 to enhance photodegradation ability. Cu-mesoporous TiO2 could gain the conspicuous increase on photocatalysis ability from ozone assistance, but without any benefit on adsorption. In addition, the online regeneration procedure could process the used Cu-mesoporous TiO2 to reinstate the adsorption ability and maintain the photodegradtion performance, depended on scrubbing, desorping acid odor and reducing Cu to metal state.

Keywords: mesoporous material, photocatalyst, adsorption, regeneration usage, photocatalytic ozonation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
326 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: Electrodeposition, kinetics diagrams, modeling, voltammetry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 811
325 The Purification of Waste Printing Developer with the Fixed Bed Adsorption Column

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Kecić S. Vesna, Oros B. Ivana

Abstract:

The present study investigates the effectiveness of newly designed clayey pellets (fired clay pellets diameter sizes of 5 and 8 mm, and unfired clay pellets with the diameter size of 15 mm) as the beds in the column adsorption process. The adsorption experiments in the batch mode were performed before the column experiment with the purpose to determine the order of adsorbent package in the column which was to be designed in the investigation. The column experiment was performed by using a known mass of the clayey beds and the volume of the waste printing developer, which was purified. The column was filled in the following order: fired clay pellets of the diameter size of 5 mm, fired clay pellets of the diameter size of 8 mm, and unfired clay pellets of the diameter size of 15 mm. The selected order of the adsorbents showed a high removal efficiency for zinc (97.8%) and copper (81.5%) ions. These efficiencies were better than those in the case of the already existing mode adsorption. The obtained experimental data present a good basis for the selection of an appropriate column fill, but further testing is necessary in order to obtain more accurate results.

Keywords: Clay materials, fix bed adsorption column, metal ions, printing developer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
324 Anthocyanin Complex: Characterization and Cytotoxicity Studies

Authors: Sucharat Limsitthichaikoon, Kedsarin Saodaeng, Aroonsri Priprem, Teerasak Damrongrungruang

Abstract:

Complexation of anthocyanins to mimic natural copigmentation process was investigated. Cyanidin-rich extracts from Zea mays L. ceritina Kulesh. and delphinidin-rich extracts from Clitoria ternatea L. were used to form 4 anthocyanin complexes, AC1, AC2, AC3 and AC4, in the presence of several polyphenols and a trace metal. Characterizations of the ACs were conducted by UV, FTIR, DSC/TGA and morphological observations. Bathochromic shifts of the UV spectra of 4 formulas of ACs were observed at peak wavelengths of about 510-620 nm by 10 nm suggesting complex formation. FTIR spectra of the ACs indicate shifts of peaks from 1,733 cm-1 to 1,696 cm-1 indicating interactions and a decrease in the peak areas within the wavenumber of 3,400-3,500 cm-1 indicating changes in hydrogen bonding. Thermal analysis of all of the ACs suggests increases in melting temperature after complexation. AC with the highest melting temperature was morphologically observed by SEM and TEM to be crystal-like particles within a range of 50 to 200 nm. Particle size analysis of the AC by laser diffraction gave a range of 50-600 nm, indicating aggregation. This AC was shown to have no cytotoxic effect on cultured HGEPp0.5 and HGF (all p> 0.05) by MTT. Therefore, complexation of anthocyanins was simple and self-assembly process, potentially resulting in nanosized particles of anthocyanin complex.

Keywords: Anthocyanins, complexation, purple corn cops, butterfly pea, physicochemical characteristics, cytotoxicity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3657
323 Dependence of Equilibrium, Kinetics and Thermodynamics of Zn (II) Ions Sorption from Water on Particle Size of Natural Hydroxyapatite Extracted from Bone Ash

Authors: Reza Bazargan-Lari, Mohammad Ebrahim Bahrololoom, Afshin Nemati

Abstract:

Heavy metals have bad effects on environment and soils and it can uptake by natural HAP .natural Hap is an inexpensive material that uptake large amounts of various heavy metals like Zn (II) .Natural HAP (N-HAP), extracted from bovine cortical bone ash, is a good choice for substitution of commercial HAP. Several experiments were done to investigate the sorption capacity of Zn (II) to N-HAP in various particles sizes, temperatures, initial concentrations, pH and reaction times. In this study, the sorption of Zinc ions from a Zn solution onto HAP particles with sizes of 1537.6 nm and 47.6 nm at three initial pH values of 4.50, 6.00 and 7.50 was studied. The results showed that better performance was obtained through a 47.6 nm particle size and higher pH values. The experimental data were analyzed using Langmuir, Freundlich, and Arrhenius equations for equilibrium, kinetic and thermodynamic studies. The analysis showed a maximum adsorption capacity of NHAP as being 1.562 mmol/g at a pH of 7.5 and small particle size. Kinetically, the prepared N-HAP is a feasible sorbent that retains Zn (II) ions through a favorable and spontaneous sorption process.

Keywords: Natural Hydroxyapatite, Heavy metal ions, Adsorption, Zn removal, kinetic model, bone ash

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
322 Optimization of Process Parameters Affecting on Spring-Back in V-Bending Process for High Strength Low Alloy Steel HSLA 420 Using FEA (HyperForm) and Taguchi Technique

Authors: Navajyoti Panda, R. S. Pawar

Abstract:

In this study, process parameters like punch angle, die opening, grain direction, and pre-bend condition of the strip for deep draw of high strength low alloy steel HSLA 420 are investigated. The finite element method (FEM) in association with the Taguchi and the analysis of variance (ANOVA) techniques are carried out to investigate the degree of importance of process parameters in V-bending process for HSLA 420&ST12 grade material. From results, it is observed that punch angle had a major influence on the spring-back. Die opening also showed very significant role on spring back. On the other hand, it is revealed that grain direction had the least impact on spring back; however, if strip from flat sheet is taken, then it is less prone to spring back as compared to the strip from sheet metal coil. HyperForm software is used for FEM simulation and experiments are designed using Taguchi method. Percentage contribution of the parameters is obtained through the ANOVA techniques.

Keywords: Bending, V-bending, FEM, spring-back, Taguchi, HyperForm, profile projector, HSLA 420 & St12 materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
321 Micro-Controller Based Oxy-Fuel Profile Cutting System

Authors: A. P. Kulkarni, P. Randive, A. R. Mache

Abstract:

In today-s era of plasma and laser cutting, machines using oxy-acetylene flame are also meritorious due to their simplicity and cost effectiveness. The objective to devise a Computer controlled Oxy-Fuel profile cutting machine arose from the increasing demand for metal cutting with respect to edge quality, circularity and lesser formation of redeposit material. The System has an 8 bit micro controller based embedded system, which assures stipulated time response. A new window based Application software was devised which takes a standard CAD file .DXF as input and converts it into numerical data required for the controller. It uses VB6 as a front end whereas MS-ACCESS and AutoCAD as back end. The system is designed around AT89C51RD2, powerful 8 bit, ISP micro controller from Atmel and is optimized to achieve cost effectiveness and also maintains the required accuracy and reliability for complex shapes. The backbone of the system is a cleverly designed mechanical assembly along with the embedded system resulting in an accuracy of about 10 microns while maintaining perfect linearity in the cut. This results in substantial increase in productivity. The observed results also indicate reduced inter laminar spacing of pearlite with an increase in the hardness of the edge region.

Keywords: Computer-Control, Profile, Oxy-Fuel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
320 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line

Authors: K. Jahani, J. Razavi

Abstract:

Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.

Keywords: Computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
319 High Temperature Oxidation of Cr-Steel Interconnects in Solid Oxide Fuel Cells

Authors: Saeed Ghali, Azza Ahmed, Taha Mattar

Abstract:

Solid Oxide Fuel Cell (SOFC) is a promising solution for the energy resources leakage. Ferritic stainless steel becomes a suitable candidate for the SOFCs interconnects due to the recent advancements. Different steel alloys were designed to satisfy the needed characteristics in SOFCs interconnect as conductivity, thermal expansion and corrosion resistance. Refractory elements were used as alloying elements to satisfy the needed properties. The oxidation behaviour of the developed alloys was studied where the samples were heated for long time period at the maximum operating temperature to simulate the real working conditions. The formed scale and oxidized surface were investigated by SEM. Microstructure examination was carried out for some selected steel grades. The effect of alloying elements on the behaviour of the proposed interconnects material and the performance during the working conditions of the cells are explored and discussed. Refractory metals alloying of chromium steel seems to satisfy the needed characteristics in metallic interconnects.

Keywords: SOFCs, Cr-steel, interconnects, oxidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1225
318 Computer Aided Design of Reshaping Process of Circular Pipes into Square Pipes

Authors: Parviz Alinezhad, Ali Sanati, Koorosh Naser Momtahen

Abstract:

Square pipes (pipes with square cross sections) are being used for various industrial objectives, such as machine structure components and housing/building elements. The utilization of them is extending rapidly and widely. Hence, the out-put of those pipes is increasing and new application fields are continually developing. Due to various demands in recent time, the products have to satisfy difficult specifications with high accuracy in dimensions. The reshaping process design of pipes with square cross sections; however, is performed by trial and error and based on expert-s experience. In this paper, a computer-aided simulation is developed based on the 2-D elastic-plastic method with consideration of the shear deformation to analyze the reshaping process. Effect of various parameters such as diameter of the circular pipe and mechanical properties of metal on product dimension and quality can be evaluated by using this simulation. Moreover, design of reshaping process include determination of shrinkage of cross section, necessary number of stands, radius of rolls and height of pipe at each stand, are investigated. Further, it is shown that there are good agreements between the results of the design method and the experimental results.

Keywords: Circular Pipes, Square Pipes, Shear Deformation, Reshaping Process, Numerical Simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1398
317 Conceptual Design and Characterization of Contractile Water Jet Thruster Using IPMC Actuator

Authors: Muhammad Farid Shaari, Zahurin Samad

Abstract:

This paper presents the design, development and characterization of contractile water jet thruster (CWJT) for mini underwater robot. Instead of electric motor, this CWJT utilizes the Ionic Polymer Metal Composite (IPMC) as the actuator to generate the water jet. The main focus of this paper is to analyze the conceptual design of the proposed CWJT which would determine the thrust force value, jet flow behavior and actuator’s stress. Those thrust force and jet flow studies were carried out using Matlab/Simscape simulation software. The actuator stress had been analyzed using COSMOS simulation software. The results showed that there was no significant change for jet velocity at variable cross sectional nozzle area. However, a significant change was detected for jet velocity at different nozzle cross sectional area ratio which was up to 37%. The generated thrust force has proportional relation to the nozzle cross sectional area.

Keywords: Contractile water jet thruster, IPMC actuator, Thrust force.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
316 Mixed Convection Heat Transfer of Copper Oxide-Heat Transfer Oil Nanofluid in Vertical Tube

Authors: Farhad Hekmatipour, M. A. Akhavan-Behabadi, Farzad Hekmatipour

Abstract:

In this paper, experiments were conducted to investigate the heat transfer of Copper Oxide-Heat Transfer Oil (CuO-HTO) nanofluid laminar flow in vertical smooth and microfin tubes as the surface temperature is constant. The effect of adding the nanoparticle to base fluid and Richardson number on the heat transfer enhancement is investigated as Richardson number increases from 0.1 to 0.7. The experimental results demonstrate that the combined forced-natural convection heat transfer rate may be improved significantly with an increment of mass nanoparticle concentration from 0% to 1.5%. In this experiment, a correlation is also proposed to predict the mixed convection heat transfer rate of CuO-HTO nanofluid flow. The maximum deviation of both correlations is less than 14%. Moreover, a correlation is presented to estimate the Nusselt number inside vertical smooth and microfin tubes as Rayleigh number is between 2´105 and 6.8´106 with the maximum deviation of 12%.

Keywords: Nanofluid, heat transfer oil, mixed convection, vertical tube, laminar flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 961
315 Advanced Micromanufacturing for Ultra Precision Part by Soft Lithography and Nano Powder Injection Molding

Authors: Andy Tirta, Yus Prasetyo, Eung-Ryul. Baek, Chul-Jin. Choi , Hye-Moon. Lee

Abstract:

Recently, the advanced technologies that offer high precision product, relative easy, economical process and also rapid production are needed to realize the high demand of ultra precision micro part. In our research, micromanufacturing based on soft lithography and nanopowder injection molding was investigated. The silicone metal pattern with ultra thick and high aspect ratio succeeds to fabricate Polydimethylsiloxane (PDMS) micro mold. The process followed by nanopowder injection molding (PIM) by a simple vacuum hot press. The 17-4ph nanopowder with diameter of 100 nm, succeed to be injected and it forms green sample microbearing with thickness, microchannel and aspect ratio is 700μm, 60μm and 12, respectively. Sintering process was done in 1200 C for 2 hours and heating rate 0.83oC/min. Since low powder load (45% PL) was applied to achieve green sample fabrication, ~15% shrinkage happen in the 86% relative density. Several improvements should be done to produce high accuracy and full density sintered part.

Keywords: Micromanufacturing, Nano PIM, PDMS micro mould.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
314 Bioremediation of Hydrocarbon and Some Heavy Metal Polluted Wastewater Effluent of a Typical Refinery

Authors: S. Abdulsalam, A. D. I. Suleiman, N. M. Musa, M. Yusuf

Abstract:

Environment free of pollutants should be the concern of every individual but with industrialization and urbanization it is difficult to achieve. In view of achieving a pollution limited environment at low cost, a study was conducted on the use of bioremediation technology to remediate hydrocarbons and three heavy metals namely; copper (Cu), zinc (Zn) and iron (Fe) from a typical petroleum refinery wastewater in a closed system. Physicochemical and microbiological characteristics on the wastewater sample revealed that it was polluted with the aforementioned pollutants. Isolation and identification of microorganisms present in the wastewater sample revealed the presence of Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus and Staphylococcus epidermidis. Bioremediation experiments carried out on five batch reactors with different compositions but at same environmental conditions revealed that treatment T5 (boosted with the association of Bacillus subtilis, Micrococcus luteus) gave the best result in terms of oil and grease content removal (i.e. 67% in 63 days). In addition, these microorganisms were able of reducing the concentrations of heavy metals in the sample. Treatments T5, T3 (boosted with Bacillus subtilis only) and T4 (boosted with Micrococcus luteus only) gave optimum percentage uptakes of 65, 75 and 25 for Cu, Zn and Fe respectively.

Keywords: Boosted, bioremediation, closed system, aeration, uptake, wastewater.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1601
313 Studies on Bioaccumulation of 51Cr by Ulva sp. and Ruppia maritima

Authors: Clarissa L. de Araujo, Kátia N. Suzuki, Wilson T. V. Machado, Luis F. Bellido, Alfredo V.B. Bellido

Abstract:

This study aims at contributing to the characterization of the process of biological incorporation of chromium by two benthonic species, the macroalgae Ulva sp. and the aquatic macrophyte Ruppia maritima, to subsidize future activities of monitoring the contamination of aquatic biota. This study is based on laboratory experiments to characterize the incorporation kinetics of the radiotracer 51Cr in two oxidation states (III and VI), under different salinities (7, 15, and 21 ‰). Samples of two benthonic species were collected on the margins of Rodrigo de Freitas Lagoon (Rio de Janeiro, Brazil), acclimated in the laboratory and subsequently subjected to experiments. In tests with 51Cr (III and IV), it was observed that accumulation of the metal in Ulva sp. has inverse relationship with salinity, while for R. maritima, the maximum accumulation occurs in salinity 21‰. In experiments with Cr(III), increases in the uptake of ion by both species were verified. The activity of Cr(III) was up to 19 times greater than the Cr(VI). As regards the potential for accumulation of metals, a better sensitivity of Ulva sp. for any chromium tri or hexavalent forms was verified, while for the Cr(VI) it will require low salinities and longer exposure (>24h). For R. maritima, the results showed the uptake of Cr(VI) increase along with time (>20h), because this species is more resistant for the hexavalent form and useful for any salinity as well.

Keywords: Chromium, Cr-51, macroalgae, macrophyte, uptake.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
312 Enrichment of Cr, Mn, Ni and Zn in Surface Soil

Authors: Gitimoni Deka, Krishna G Bhattacharyya

Abstract:

The textile industry produces highly coloured effluents containing polar and non-polar compounds. The textile mill run by the Assam Polyester Co-operative Society Limited (APOL) is situated at Rangia, about 55 km from Guwahati (26011' N, 91047' E) in the northern bank of the river Brahmaputra, Assam (India). This unit was commissioned in June 1988 and started commercial production in November 1988. The installed capacity of the weaving unit was 8000 m/day and that of the processing unit was 20,000 m/day. The mill has its own dyeing unit with a capacity of 1500-2000 kg/day. The western side of the mill consists of vast agricultural land and the far northern and southern side of the mill has scattered human population. The eastern side of the mill has a major road for thoroughfare. The mill releases its effluents into the agricultural land in the western side of the mill. The present study was undertaken to assess the impact of the textile mill on surface soil quality in and around the mill with particular reference to Cr, Mn, Ni and Zn. Surface soil samples, collected along different directions at 200, 500 and 1000 m were digested and the metals were estimated with Atomic Absorption Spectrophotometer. The metals were found in the range of: Cr 50.9 – 105.0 mg kg-1, Mn 19.2- 78.6 mg kg-1, Ni 41.9 – 50.6 mg kg-1 and Zn 187.8 – 1095.8 mg kg-1. The study reveals enrichment of Cr, Mn, Ni and Zn in the soil near the textile mill.

Keywords: Cr, Mn, Ni, Zn, soil quality, heavy metal enrichment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
311 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: Anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2128
310 Novel Intrinsic Conducting Polymer Current Limiting Device (CLD) for Surge Protection

Authors: Noor H Jabarullah

Abstract:

In the past many uneconomic solutions for limitation and interruption of short-circuit currents in low power applications have been introduced, especially polymer switch based on the positive temperature coefficient of resistance (PCTR) concept. However there are many limitations in the active material, which consists of conductive fillers. This paper presents a significantly improved and simplified approach that replaces the existing current limiters with faster switching elements. Its elegance lies in the remarkable simplicity and low-cost processes of producing the device using polyaniline (PANI) doped with methane-sulfonic acid (MSA). Samples characterized as lying in the metallic and critical regimes of metal insulator transition have been studied by means of electrical performance in the voltage range from 1V to 5 V under different environmental conditions. Moisture presence is shown to increase the resistivity and also improved its current limiting performance. Additionally, the device has also been studied for electrical resistivity in the temperature range 77 K-300 K. The temperature dependence of the electrical conductivity gives evidence for a transport mechanism based on variable range hopping in three dimensions.

Keywords: Conducting polymer, current limiter, intrinsic, moisture dependence, polyaniline, resettable, surge protection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180
309 Multilayer Adsorption as a Possible Transition State in Heterogeneous Hydrogenation of C=C Double Bonds

Authors: V. Heral

Abstract:

Ideas about the mechanism of heterogeneous catalytic hydrogenation are diverse. The Horiuti-Polanyi mechanism is most often referred to base on the idea of a semi-hydrogenated state. In our opinion, it does not represent a satisfactory explanation of the hydrogenation mechanism because, for example, (1) It neglects the fact that the bond of atomic hydrogen to the metal surface is strongly polarized, (2) It does not explain why a surface deprived of atomic hydrogen (by thermal desorption or by alkyne) loses isomerization capabilities, but hydrogenation capabilities remain preserved, (3) It was observed that during the hydrogenation of 1-alkenes, the reaction can be of the 0th order to hydrogen and to the alkene at the same time, which is excluded during the competitive adsorption of both reactants on the catalyst surface. We offer an alternative mechanism that satisfactorily explains many of the ambiguities: It is the idea of an independent course of olefin isomerization, catalyzed by acidic atomic hydrogen bonded on the surface of the catalyst, in addition to the hydrogenation itself, in which a two-layer complex appears on the surface of the catalyst: olefin bound to the surface and molecular hydrogen bound to it in the second layer. The rate-determining step of hydrogenation is the conversion of this complex into the final product. In our opinion, the Horiuti-Polanyi mechanism is flawed, and we naturally think that our two-layer theory better describes the experimental findings.

Keywords: Acidity of hydrogenation catalyst, Horiuti-Polanyi, hydrogenation, two-layer hydrogenation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57
308 Thermally Stable Nanocrystalline Aluminum Alloys Processed by Mechanical Alloying and High Frequency Induction Heat Sintering

Authors: Hany R. Ammar, Khalil A. Khalil, El-Sayed M. Sherif

Abstract:

The current study investigated the influence of milling time and ball-to-powder (BPR) weight ratio on the microstructural constituents and mechanical properties of bulk nanocrystalline Al; Al-10%Cu; and Al-10%Cu-5%Ti alloys. Powder consolidation was carried out using a high frequency induction heat sintering where the processed metal powders were sintered into a dense and strong bulk material. The powders and the bulk samples were characterized using XRD and FEGSEM techniques. The mechanical properties were evaluated at various temperatures of 25°C, 100°C, 200°C, 300°C and 400°C to study the thermal stability of the processed alloys. The processed bulk nanocrystalline alloys displayed extremely high hardness values even at elevated temperatures. The Al-10%Cu-5%Ti alloy displayed the highest hardness values at room and elevated temperatures which are related to the presence of Ti-containing phases such as Al3Ti and AlCu2Ti. These phases are thermally stable and retain the high hardness values at elevated temperatures up to 400ºC.

Keywords: Nanocrystalline Aluminum Alloys, Mechanical Alloying, Sintering, Hardness, Thermal Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2566
307 Banana Peels as an Eco-Sorbent for Manganese Ions

Authors: M. S. Mahmoud

Abstract:

This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4% is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2°C, stirring rate 200 rpm and contact time 2h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4% and 97.1%, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7% and 82.4%, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.

Keywords: Biosorption, banana peels, isothermal models, manganese.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3252
306 En-Face Optical Coherence Tomography Combined with Fluorescence in Material Defects Investigations for Ceramic Fixed Partial Dentures

Authors: C. Sinescu, M. Negrutiu, M. Romînu, C. Haiduc, E. Petrescu, M. Leretter, A.G. Podoleanu

Abstract:

Optical Coherence Tomography (OCT) combined with the Confocal Microscopy, as a noninvasive method, permits the determinations of materials defects in the ceramic layers depth. For this study 256 anterior and posterior metal and integral ceramic fixed partial dentures were used, made with Empress (Ivoclar), Wollceram and CAD/CAM (Wieland) technology. For each investigate area 350 slices were obtain and a 3D reconstruction was perform from each stuck. The Optical Coherent Tomography, as a noninvasive method, can be used as a control technique in integral ceramic technology, before placing those fixed partial dentures in the oral cavity. The purpose of this study is to evaluate the capability of En face Optical Coherence Tomography (OCT) combined with a fluorescent method in detection and analysis of possible material defects in metalceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Keywords: Ceramic Fixed Partial Dentures, Material Defects, En face Optical Coherence Tomography, Fluorescence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1491
305 Modeling of Nitrogen Solubility in Stainless Steel

Authors: Saeed Ghali, Hoda El-Faramawy, Mamdouh Eissa, Michael Mishreky

Abstract:

Scale-resistant austenitic stainless steel, X45CrNiW 18-9, has been developed, and modified steels produced through partial and total nickel replacement by nitrogen. These modified steels were produced in a 10 kg induction furnace under different nitrogen pressures and were cast into ingots. The produced modified stainless steels were forged, followed by air cooling. The phases of modified stainless steels have been investigated using the Schaeffler diagram, dilatometer, and microstructure observations. Both partial and total replacements of nickel using 0.33-0.50% nitrogen are effective in producing fully austenitic stainless steels. The nitrogen contents were determined and compared with those calculated using the Institute of Metal Science (IMS) equation. The results showed great deviations between the actual nitrogen contents and predicted values through IMS equation. So, an equation has been derived based on chemical composition, pressure, and temperature at 1600 oC: [N%] = 0.0078 + 0.0406*X, where X is a function of chemical composition and nitrogen pressure. The derived equation has been used to calculate the nitrogen content of different steels using published data. The results reveal the difficulty of deriving a general equation for the prediction of nitrogen content covering different steel compositions. So, it is necessary to use a narrow composition range.

Keywords: Solubility, nitrogen, stainless steel, Schaeffler.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 62
304 Combined Effect of Cold Rolling and Heat Treatment on the Mechanical Properties of Al-Ti Alloy

Authors: Adeosun S. Oluropo, Sekunowo O. Israel, Talabi S. Isaac

Abstract:

This study investigated the combined effect of cold rolling and heat treatment on the mechanical properties of Al-Ti alloy. Samples of the alloy are cast in metal mould to obtain 0.94-2.19wt% mixes of titanium. These samples are grouped into untreated (as-cast) and those that are cold rolled to fifty percent reduction, homogenized at 5000C and soaked for one hour. The cold rolled and heat treated samples are normalized (RTn) and quench-tempered (RTq-t) at 1000C. All these samples are subjected to tensile, micro-hardness and microstructural evaluation. Results show remarkable improvement in the mechanical properties of the cold rolled and heat treated samples compared to the as-cast. In particular, the RTq-t samples containing titanium in the range of 1.7-2.2% demonstrates improve tensile strength by 24.7%, yield strength, 28%, elastic modulus, 38.3% and micro-hardness, 20.5%. The Al3Ti phase being the most stable precipitate in the α-Al matrix appears to have been responsible for the significant improvement in the alloy’s mechanical properties. It is concluded that quench and temper heat treatment is an effective method of improving the strength-strain ratio of cold rolled Al-.0.9-2.2%Ti alloy.

Keywords: Aluminum-titanium alloy, heat treatment, mechanical properties, precipitate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759