Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
Development of a Water-Jet Assisted Underwater Laser Cutting Process
Authors: Suvradip Mullick, Yuvraj K. Madhukar, Subhranshu Roy, Ashish K. Nath
Abstract:
We present the development of a new underwater laser cutting process in which a water-jet has been used along with the laser beam to remove the molten material through kerf. The conventional underwater laser cutting usually utilizes a high pressure gas jet along with laser beam to create a dry condition in the cutting zone and also to eject out the molten material. This causes a lot of gas bubbles and turbulence in water, and produces aerosols and waste gas. This may cause contamination in the surrounding atmosphere while cutting radioactive components like burnt nuclear fuel. The water-jet assisted underwater laser cutting process produces much less turbulence and aerosols in the atmosphere. Some amount of water vapor bubbles is formed at the laser-metal-water interface; however, they tend to condense as they rise up through the surrounding water. We present the design and development of a water-jet assisted underwater laser cutting head and the parametric study of the cutting of AISI 304 stainless steel sheets with a 2 kW CW fiber laser. The cutting performance is similar to that of the gas assist laser cutting; however, the process efficiency is reduced due to heat convection by water-jet and laser beam scattering by vapor. This process may be attractive for underwater cutting of nuclear reactor components.Keywords: Laser, underwater cutting, water-jet.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1328774
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4671References:
[1] J. Lu, R. Q. Xu, X. Chen, Z. H. Shen, X. W. Ni, Mechanism of laser drilling of metal plates underwater, J. Appl. Phys., 95(8) (2004) 3890- 3894.
[2] Chwan-Huei Tsai, Chang-Cheng Li, Investigation of underwater laser drilling for brittle substrates, J. Mater. Process. Tech., 209 (2009) 2838- 2846.
[3] Y. Yan, L. Li, K. Sezer, W. Wang, D. Whitehead, L Ji, Y Baob, Y. Jiang, CO2 laser underwater machining of deep cavities in alumina, J. Eur. Ceram. Soc., 31 (2011) 2793-2807.
[4] K.L. Choo, Y. Ogawa, G. Kanbargi, V. Otra, L.M. Raff, R. Komanduri, Micromachining of silicon by short-pulse laser ablation in air and under water, Mater. Sci. Eng. A, 372 (2004) 145-162.
[5] A. K. Das, P. Saha, Excimer Laser Micromachining of Silicon in Air and Water Medium, Int. J. Manuf. Tech. Manag., 21(1-2) (2010) 42-53.
[6] L. M. Wee, E. Y. K. Ng, A. H. Prathama , H. Zheng, Micro-machining of silicon wafer in air and underwater, Opt. Laser. Technol., 43 (2011) 62-71.
[7] J.J.J. Kaakkunen, M. Silvennoinen, K. Paivasaari, P. Vahimaa, Water- Assisted Femtosecond Laser Pulse Ablation of High Aspect Ratio Holes, Physics Procedia, 12 (2011) 89-93.
[8] L.M. Wee, L. E. Khoong, C.W. Tan, and G. C. Lim, Solvent-Assisted Laser Drilling of Silicon Carbide, Int. J. Appl. Ceram. Technol., 8
[6] (2011)1263-1276.
[9] L. S. Jiao, E. Y. K. Ng , L. M. Wee, and H. Y. Zheng, The effect of assist liquid on the hole taper improvement in femtosecond laser percussion drilling, Physics Procedia, 19 (2011) 426-430.
[10] C. S. Montross, T. Wei, L. Ye, G. Clark, Y. W. Mai, Laser shock processing and its effects on microstructure and properties of metals: a review, Int. J. of fatigue, 24 (2002) 1021-1036.
[11] N. Muhammad, D. Whitehead, A. Boor, L. Li, Comparison of dry and wet fibre laser profile cutting of thin 316L stainless steel tubes for (a) (b) medical device applications, J. Mater. Process. Tech., 210 (2010) 2261- 2267.
[12] N. Muhammad, L. Li, Underwater femtosecond laser micromachining of thin nitinol tubes for medical coronary stent manufacture, Appl. Phys. A, 107 (2012) 849-861.
[13] B. Richerzhagen, R. Housh, F. Wagner, and J. Manley, Water jet guided laser cutting: a powerful hybrid technology for fine cutting and grooving, in Proceedings of the 2004 Advanced Laser Applications Conference and Exposition, D. Roessler and N. Uddin, eds. (ALAC, 2004), pp. 175-181.
[14] T. Levesqure, D. Perrottet, B. Richerzhagen, Damage-free cutting of medical devices using the water-jet-guided laser, Medical Devices Materials-III, ed. By Ramakroshna Venugopalanand Ming Wu, Proc. Materials and Processes for Medical Devices Conf., Nov. 14-16, 2005, Boston, Mass. USA.
[15] J. A. Porter, Y. A. Louhisalmi, J. A. Karjalainen, S. F├╝ger, Cutting thin sheet metal with a water jet guided laser using various cutting distances, feed speeds and angles of incidence, Int. J. Adv. Manuf. Technol., 33 (2007) 961-967.
[16] V. Tangwarodomnukun, J. Wang, C.Z. Huang, H.T. Zhu, An investigaton of hybrid laser-waterjet ablation of silicon substrate, Int. j. Mach. Tool. Manu., 56 (2012) 39-49.
[17] I. Chida, K. Okazaki, S. Shima, K. Kurihara,Y. Yuguchi, I. Sato, Underwater cutting technology of thick stainless steel with YAG laser, Proc. SPIE 4831 (453) (2003), http://dx.doi.org/10.1117/12.497715.
[18] R. K. Jain, D. K. Agrawal, S. C. Vishwakarma, A. K. Choubey, B. N. Upadhyaya and S. M. Oak, Development of underwater laser cutting technique for steel and zircaloy for nuclear applications, Pramana, 75 (6) (2010) 1253-1258.
[19] T. Hino, M. Tamura, Y. Tanaka, W. Kouno, Y. Makino, S. Kawano, and K. Matsunaga, Development of Underwater Laser Cladding and Underwater Laser Seal Welding Techniques for Reactor Components, J. Power and Energy Systems, 3 (1) (2009) 51-59.
[20] A. Kruusing, Underwater and water-assisted laser processing:Part 2ÔÇö Etching, cutting and rarely used methods, Opt. Laser Eng., 41(2) (2004) 329-352.
[21] J. A. Curcio and C. C. Petty, The Near Infrared Absorption Spectrum of Liquid Water, J. Opt. Soc. Am., 41(5) (1951) 302-304.
[22] S. Mullick, Y. K. Madhukar, S. Kumar, D. K. Shukla, and A. K. Nath, Temperature and intensity dependence of Yb-fiber laser light absorption in water, Appl. Opt., 50(34) (2011) 6319-6326.
[23] Y. K. Madhukar, S. Mullick, D. K. Shukla, S. Kumar, A. K. Nath, Effect of laser operating mode in paint removal with a fiber laser, Appl. Surf. Sci., 264 (2013) 892- 901.
[24] W. M. Steen and J. Mazumder, Laser Material Processing, 4th edition, Springer - Verlag London 2010, pp156-161.
[25] L. D. Scintilla, L. Tricarico, A. Wetzig, A. Mahrle, E. Beyer, Primary losses in disk and CO2 laser beam inert gas fusion cutting, J. Mate. Process. Tech., 211 (2011) 2050-2061.
[26] A. Bharti, R Sivakumar, The mechanism of laser removal in laser fusion cutting, Laser Eng., 5(2) (1996) 87-105.
[27] R. Poprawe, W. König, Modeling, Monitoring and Control in High Quality Laser Cutting, CIRP Annals - Manufacturing Technology, 50(1) (2001) 137-140.
[28] R. Poprawe, W. Schulz, R. Schmitt, Hydrodynamics of material removal by melt expulsion: Prospectives of laser cutting and drilling, Physics Procedia5 (2010) 1-18.
[29] L. D. Scintilla, L.Tricarico , Estimating cutting front temperature difference in disk and CO2 laser beam fusion cutting, Opt. Laser Technol., 44 (2012) 1468-1479.
[30] L. D. Scintilla, L.Tricarico, Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31magnesium alloy sheets, Opt. Laser Technol., 46 (2012) 42-52.
[31] A. Mahrle and E. Beyer, Theoretical aspects of fibre laser cutting, J. Phys. D: Appl. Phys. 42 (2009) 175507 (9pp).
[32] K. Abdel Ghany, M. Newishy, Cutting of 1.2 mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser, J. Mate. Process. Tech., 168 (2005) 438-447.