Search results for: solar and wind energy potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5211

Search results for: solar and wind energy potential

4581 Energy Production from Marine Biomass: Fuel Cell Power Generation Driven by Methane Produced from Seaweed

Authors: Shinya Yokoyama, Katsunari Jonouchi, Kenji Imou

Abstract:

This paper discusses the utilization of marine biomass as an energy resource in Japan. A marine biomass energy system in Japan was proposed consisting of seaweed cultivation (Laminaria japonica) at offshore marine farms, biogas production via methane fermentation of the seaweeds, and fuel cell power generation driven by the generated biogas. We estimated energy output, energy supply potential, and CO2 mitigation in Japan on the basis of the proposed system. As a result, annual energy production was estimated to be 1.02-109 kWh/yr at nine available sites. Total CO2 mitigation was estimated to be 1.04-106 tonnes per annum at the nine sites. However, the CO2 emission for the construction of relevant facilities is not taken into account in this paper. The estimated CO2 mitigation is equivalent to about 0.9% of the required CO2 mitigation for Japan per annum under the Kyoto Protocol framework.

Keywords: CO2 mitigation, Fuel cell power generation, Laminaria japonica, Marine biomass, Seaweed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4719
4580 A Saltwater Battery Inspired by the Membrane Potential Found in Biological Cells

Authors: Andrew Jester, Ross Lee, Pritpal Singh

Abstract:

As the world transitions to a more sustainable energy economy, the deployment of energy storage technologies is expected to increase to develop a more resilient grid system. However, current technologies are associated with various environmental and safety issues throughout their entire lifecycle; therefore, a new battery technology is desirable for grid applications to curtail these risks. Biological cells, such as human neurons and electrocytes in the electric eel, can serve as a more sustainable design template for a new bio-inspired (i.e., biomimetic) battery. Within biological cells, an electrochemical gradient across the cell membrane forms the membrane potential, which serves as the driving force for ion transport into/out of the cell akin to the charging/discharging of a battery cell. This work serves as the first step for developing such a biomimetic battery cell, starting with the fabrication and characterization of ion-selective membranes to facilitate ion transport through the cell. Performance characteristics (e.g., cell voltage, power density, specific energy, roundtrip efficiency) for the cell under investigation are compared to incumbent battery technologies and biological cells to assess the readiness level for this emerging technology. Using a Na+-Form Nafion-117 membrane, the cell in this work successfully demonstrated behavior like human neurons; these findings will inform how cell components can be re-engineered to enhance device performance.

Keywords: Battery, biomimetic, electrocytes, human neurons, ion-selective membranes, membrane potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 348
4579 Detailed Phenomenological Study of 14N Elastically Scattered on 12C in a wide Energy Range

Authors: Sh. Hamada, N. Burtebayev, N. Amangeldi, A. Amar

Abstract:

An experiment was performed with a 24.5 MeV 14N beam on a 12C target in the cyclotron DC-60 located in Astana, Kazakhstan, to study the elastic scattering of 14N on 12C; the scattering was also analyzed at different energies for tracking the phenomenon of remarkable structure at large angles. Its aims were to extend the measurements to very large angles, and attempt to uniquely identify the elastic scattering potential. Good agreement between the theoretical and experimental data has been obtained with suitable optical potential parameters. Optical model calculations with l -dependent imaginary potentials were also applied to the data and relatively good agreement was found.

Keywords: Optical Potential Codes, Elastic Scattering, SPIVALCode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
4578 Energy Models for Analyzing the Economic Wide Impact of the Environmental Policies

Authors: Majdi M. Alomari, Nafesah I. Alshdaifat, Mohammad S. Widyan

Abstract:

Different countries have introduced different schemes and policies to counter global warming. The rationale behind the proposed policies and the potential barriers to successful implementation of the policies adopted by the countries were analyzed and estimated based on different models. It is argued that these models enhance the transparency and provide a better understanding to the policy makers. However, these models are underpinned with several structural and baseline assumptions. These assumptions, modeling features and future prediction of emission reductions and other implication such as cost and benefits of a transition to a low-carbon economy and its economy wide impacts were discussed. On the other hand, there are potential barriers in the form political, financial, and cultural and many others that pose a threat to the mitigation options.

Keywords: Economic wide impact, energy models, environmental policy instruments, mitigating CO2 emission.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1529
4577 Sea Level Characteristics Referenced to Specific Geodetic Datum in Alexandria, Egypt

Authors: Ahmed M. Khedr, Saad M. Abdelrahman, Kareem M. Tonbol

Abstract:

Two geo-referenced sea level datasets (September 2008 – November 2010) and (April 2012 – January 2014) were recorded at Alexandria Western Harbour (AWH). Accurate re-definition of tidal datum, referred to the latest International Terrestrial Reference Frame (ITRF-2014), was discussed and updated to improve our understanding of the old predefined tidal datum at Alexandria. Tidal and non-tidal components of sea level were separated with the use of Delft-3D hydrodynamic model-tide suit (Delft-3D, 2015). Tidal characteristics at AWH were investigated and harmonic analysis showed the most significant 34 constituents with their amplitudes and phases. Tide was identified as semi-diurnal pattern as indicated by a “Form Factor” of 0.24 and 0.25, respectively. Principle tidal datums related to major tidal phenomena were recalculated referred to a meaningful geodetic height datum. The portion of residual energy (surge) out of the total sea level energy was computed for each dataset and found 77% and 72%, respectively. Power spectral density (PSD) showed accurate resolvability in high band (1–6) cycle/days for the nominated independent constituents, except some neighbouring constituents, which are too close in frequency. Wind and atmospheric pressure data, during the recorded sea level time, were analysed and cross-correlated with the surge signals. Moderate association between surge and wind and atmospheric pressure data were obtained. In addition, long-term sea level rise trend at AWH was computed and showed good agreement with earlier estimated rates.

Keywords: Alexandria, Delft-3D, Egypt, geodetic reference, harmonic analysis, sea level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
4576 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1012
4575 Selection of an Optimum Configuration of Solar PV Array under Partial Shaded Condition Using Particle Swarm Optimization

Authors: R. Ramaprabha

Abstract:

This paper presents an extraction of maximum energy from Solar Photovoltaic Array (SPVA) under partial shaded conditions by optimum selection of array size using Particle Swarm Optimization (PSO) technique. In this paper a detailed study on the output reduction of different SPVA configurations under partial shaded conditions have been carried out. A generalized MATLAB M-code based software model has been used for any required array size, configuration, shading patterns and number of bypass diodes. Comparative study has been carried out on different configurations by testing several shading scenarios. While the number of shading patterns and the rate of change are very low for stationary SPVA but these may be quite large for SPVA mounted on a mobile platforms. This paper presents the suitability of PSO technique to select optimum configuration for mobile arrays by calculating the global peak (GP) of different configurations and to transfer maximum power to the load.

Keywords: Global peak, Mobile PV arrays, Partial shading, optimization, PSO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4204
4574 The Potential of Hybrid Microgrids for Mitigating Power Outage in Lebanon

Authors: R. Chedid, R. Ghajar

Abstract:

Lebanon electricity crisis continues to escalate. Rationing hours still apply across the country but with different rates. The capital Beirut is subjected to 3 hours cut while other cities, town and villages may endure 9 to 14 hours of power shortage. To mitigate this situation, private diesel generators distributed illegally all over the country are being used to bridge the gap in power supply. Almost each building in large cities has its own generator and individual villages may have more than one generator supplying their loads. These generators together with their private networks form incomplete and ill-designed and managed microgrids (MG) but can be further developed to become renewable energy-based MG operating in island- or grid-connected modes. This paper will analyze the potential of introducing MG to help resolve the energy crisis in Lebanon. It will investigate the usefulness of developing MG under the prevailing situation of existing private power supply service providers and in light of the developed national energy policy that supports renewable energy development. A case study on a distribution feeder in a rural area will be analyzed using HOMER software to demonstrate the usefulness of introducing photovoltaic (PV) arrays along the existing diesel generators for all the stakeholders; namely, the developers, the customers, the utility and the community at large. Policy recommendations regarding MG development in Lebanon will be presented on the basis of the accumulated experience in private generation and the privatization and public-private partnership laws.

Keywords: Decentralized systems, microgrids, distributed generation, renewable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
4573 Pathway to Reduce Industrial Energy Intensity for Energy Conservation at Chinese Provincial Level

Authors: Shengman Zhao, Yang Yu, Shenghui Cui

Abstract:

Using logarithmic mean Divisia decomposition technique, this paper analyzes the change in industrial energy intensity of Fujian Province in China, based on data sets of added value and energy consumption for 35 selected industrial sub-sectors from 1999 to 2009. The change in industrial energy intensity is decomposed into intensity effect and structure effect. Results show that the industrial energy intensity of Fujian Province has achieved a reduction of 51% over the past ten years. The structural change, a shift in the mix of industrial sub-sectors, made overwhelming contribution to the reduction. The impact of energy efficiency’s improvement was relatively small. However, the aggregate industrial energy intensity was very sensitive to both the changes in energy intensity and in production share of energy-intensive sub-sectors, such as production and supply of electric power, steam and hot water. Pathway to reduce industrial energy intensity for energy conservation in Fujian Province is proposed in the end.

Keywords: Decomposition analysis, energy intensity, Fujian Province, industry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1362
4572 Thermal Performance of Hybrid PVT Collector with Natural Circulation

Authors: K. Touafek, A. Khelifa, I. Tabet, H. Haloui, H. Bencheikh El Houcine, M. Adouane

Abstract:

Hybrid photovoltaic thermal (PVT) collectors allow simultaneous production of electrical energy thus heat energy. There are several configurations of hybrid collectors (to produce water or air). For hybrids water collectors, there are several configurations that differ by the nature of the absorber (serpentine, tubes...). In this paper, an absorber tank is studied. The circulation of the coolant is natural (we do not use the pump). We present the obtained results in our experimental study and we analyzed the data, and then we compare the results with the theory practices. The electrical performances of the hybrid collector are compared with those of conventional photovoltaic module mounted on the same structure and measured under the same conditions.

We conducted experiments with natural circulation of the coolant (Thermosyphon), for a flow rate of 0.025kg/m².

Keywords: Experimental, Photovoltaic, Solar, Temperature, Tank.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
4571 Investigating the Invalidity of the Law of Energy Conservation Based on Waves Interference Phenomenon Inside a Ringed Waveguide

Authors: M. Yusefzad

Abstract:

Law of energy conservation is one of the fundamental laws of physics. Energy is conserved, and the total amount of energy is constant. It can be transferred from one object to another and changed from one state to another. However, in the case of wave interference, this law faces important contradictions. Based on the presented mathematical relationship in this paper, it seems that validity of this law depends on the path of energy wave, like light, in which it is located. In this paper, by using some fundamental concepts in physics like the constancy of the electromagnetic wave speed in a specific media and wave theory of light, it will be shown that law of energy conservation is not valid in every condition and in some circumstances, it is possible to increase energy of a system with a determined amount of energy without any input.

Keywords: Power, law of energy conservation, electromagnetic wave, interference, Maxwell’s equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1018
4570 Energy Consumption and Surface Finish Analysis of Machining Ti6Al4V

Authors: Salman Pervaiz, Ibrahim Deiab, Amir Rashid, Mihai Nicolescu, Hossam Kishawy

Abstract:

Greenhouse gases (GHG) emissions impose major threat to global warming potential (GWP). Unfortunately manufacturing sector is one of the major sources that contribute towards the rapid increase in greenhouse gases (GHG) emissions. In manufacturing sector electric power consumption is the major driver that influences CO2 emission. Titanium alloys are widely utilized in aerospace, automotive and petrochemical sectors because of their high strength to weight ratio and corrosion resistance. Titanium alloys are termed as difficult to cut materials because of their poor machinability rating. The present study analyzes energy consumption during cutting with reference to material removal rate (MRR). Surface roughness was also measured in order to optimize energy consumption.

Keywords: Energy Consumption, CO2 Emission, Ti6Al4V.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2759
4569 Comparison of Traditional and Green Building Designs in Egypt: Energy Saving

Authors: Hala M. Abdel Mageed, Ahmed I. Omar, Shady H. E. Abdel Aleem

Abstract:

This paper describes in details a commercial green building that has been designed and constructed in Marsa Matrouh, Egypt. The balance between homebuilding and the sustainable environment has been taken into consideration in the design and construction of this building. The building consists of one floor with 3 m height and 2810 m2 area while the envelope area is 1400 m2. The building construction fulfills the natural ventilation requirements. The glass curtain walls are about 50% of the building and the windows area is 300 m2. 6 mm greenish gray tinted temper glass as outer board lite, 6 mm safety glass as inner board lite and 16 mm thick dehydrated air spaces are used in the building. Visible light with 50% transmission, 0.26 solar factor, 0.67 shading coefficient and 1.3 W/m2.K thermal insulation U-value are implemented to realize the performance requirements. Optimum electrical distribution for lighting system, air conditions and other electrical loads has been carried out. Power and quantity of each type of the lighting system lamps and the energy consumption of the lighting system are investigated. The design of the air conditions system is based on summer and winter outdoor conditions. Ventilated, air conditioned spaces and fresh air rates are determined. Variable Refrigerant Flow (VRF) is the air conditioning system used in this building. The VRF outdoor units are located on the roof of the building and connected to indoor units through refrigerant piping. Indoor units are distributed in all building zones through ducts and air outlets to ensure efficient air distribution. The green building energy consumption is evaluated monthly all over one year and compared with the consumed energy in the non-green conditions using the Hourly Analysis Program (HAP) model. The comparison results show that the total energy consumed per year in the green building is about 1,103,221 kWh while the non-green energy consumption is about 1,692,057 kWh. In other words, the green building total annual energy cost is reduced from 136,581 $ to 89,051 $. This means that, the energy saving and consequently the money-saving of this green construction is about 35%. In addition, 13 points are awarded by applying one of the most popular worldwide green energy certification programs (Leadership in Energy and Environmental Design “LEED”) as a rating system for the green construction. It is concluded that this green building ensures sustainability, saves energy and offers an optimum energy performance with minimum cost.

Keywords: Energy consumption, energy saving, green building, leadership in energy and environmental design, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1511
4568 Numerical and Experimental Investigations of Cantilever Rectangular Plate Structure on Subsonic Flutter

Authors: Mevlüt Burak Dalmış, Kemal Yaman

Abstract:

In this study, flutter characteristics of cantilever rectangular plate structure under incompressible flow regime are investigated by comparing the results of commercial flutter analysis program ZAERO© with wind tunnel tests conducted in Ankara Wind Tunnel (ART). A rectangular polycarbonate (PC) plate, 5x125x1000 mm in dimensions, is used for both numerical and experimental investigations. Analysis and test results are very compatible with each other. A comparison between two different solution methods (g and k-method) of ZAERO© is also done. It is seen that, k-method gives closer result than the other one. However, g-method results are on conservative side and it is better to use conservative results namely g-method results. Even if the modal analysis results are used for the flutter analysis for this simple structure, a modal test should be conducted in order to validate the modal analysis results to have accurate flutter analysis results for more complicated structures.

Keywords: Flutter, plate, subsonic flow, wind tunnel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 941
4567 Variability in Near-Surface Ultraviolet Radiation and Its Dependence on Atmospheric Parameters

Authors: Yusuff Idowu Moshood, Sanni Mohammed

Abstract:

Natural radiations such as ultraviolet (UV) radiation sourced from sun are known to be the main causes of skin cancer, sunburn, eye damage, premature aging of skin and other skin related diseases. Its percentage of radiation reaching the earth populace and its impacts are not well known. Its variability in near-surface relating to its impacts on populace depends on some atmospheric parameters. Hence, this work was embarked on to determine the variability in near-surface UV radiation and its dependency on some atmospheric parameters at different time of the day in Offa, Nigeria. The variability was determined using the data obtained from meteorological garden, Science Laboratory Technology Department, Federal Polytechnic Offa, Nigeria. The data obtained were solar UV radiation, solar radiation, temperature, humidity and pressure at 30 minutes interval. Relationships were determined and correlations were derived using SPSS Pearson Correlation tool. The results showed a significant level of correlation with p-value of 0.01 and 0.05 levels. Thus, the results revealed some good relationships between the solar UV radiation and other atmospheric parameters with significance level less than p-value obtained. Inferentially, interdependent relationships were found to exist. Therefore, the nature of relationship obtained could be a yardstick for decision making in short term environmental planning on solar UV radiation depending of some atmospheric parameters within Offa locality.

Keywords: Correlation, inferential, radiation, yardstick.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
4566 Evaluating the Validity of Computational Fluid Dynamics Model of Dispersion in a Complex Urban Geometry Using Two Sets of Experimental Measurements

Authors: Mohammad R. Kavian Nezhad, Carlos F. Lange, Brian A. Fleck

Abstract:

This research presents the validation study of a computational fluid dynamics (CFD) model developed to simulate the scalar dispersion emitted from rooftop sources around the buildings at the University of Alberta North Campus. The ANSYS CFX code was used to perform the numerical simulation of the wind regime and pollutant dispersion by solving the 3D steady Reynolds-averaged Navier-Stokes (RANS) equations on a building-scale high-resolution grid. The validation study was performed in two steps. First, the CFD model performance in 24 cases (eight wind directions and three wind speeds) was evaluated by comparing the predicted flow fields with the available data from the previous measurement campaign designed at the North Campus, using the standard deviation method (SDM), while the estimated results of the numerical model showed maximum average percent errors of approximately 53% and 37% for wind incidents from the North and Northwest, respectively. Good agreement with the measurements was observed for the other six directions, with an average error of less than 30%. In the second step, the reliability of the implemented turbulence model, numerical algorithm, modeling techniques, and the grid generation scheme was further evaluated using the Mock Urban Setting Test (MUST) dispersion dataset. Different statistical measures, including the fractional bias (FB), the mean geometric bias (MG), and the normalized mean square error (NMSE), were used to assess the accuracy of the predicted dispersion field. Our CFD results are in very good agreement with the field measurements.

Keywords: CFD, plume dispersion, complex urban geometry, validation study, wind flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 321
4565 Strategies and Compromises: Towards an Integrated Energy and Climate Policy for Egypt

Authors: S.T. El Sheltawy, A. A. Refaat

Abstract:

Until recently, energy security and climate change were considered separate issues to be dealt with by policymakers. The two issues are now converging, challenging the security and climate communities to develop a better understanding of how to deal with both issues simultaneously. Although Egypt is not a major contributor to the world's total GHG emissions, it is particularly vulnerable to the potential effects of global climate change such as rising sea levels and changed patterns of rainfall in the Nile Basin. Climate change is a major threat to sustainable growth and development in Egypt, and the achievement of the Millennium Development Goals. Egypt-s capacity to respond to the challenges of climate instability will be expanded by improving overall resilience, integrating climate change goals into sustainable development strategies, increasing the use of modern energy systems with reduced carbon intensity, and strengthening international initiatives. This study seeks to establish a framework for considering the complex and evolving links between energy security and climate change, applicable to Egypt.

Keywords: climate change, climate policy, cnergy policy, energy security, sustainable development

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
4564 Extracts of Cola acuminata, Lupinus arboreus and Bougainvillea spectabilis as Natural Photosensitizers for Dye-Sensitized Solar Cells

Authors: M. L. Akinyemi, T. J. Abodurin, A. O. Boyo, J. A. O. Olugbuyiro

Abstract:

Organic dyes from Cola acuminata (C. acuminata), Lupinus arboreus (L. arboreus) and Bougainvillea spectabilis (B. spectabilis) leaves and their mixtures were used as sensitizers to manufacture dye-sensitized solar cells (DSSC). Photoelectric measurements of C. acuminata showed a short circuit current (Jsc) of 0.027 mA/ cm2, 0.026 mA/ cm2 and 0.018 mA/ cm2 with a mixture of mercury chloride and iodine (Hgcl2 + I); potassium bromide and iodine (KBr + I); and potassium chloride and iodine (KCl + I) respectively. The open circuit voltage (Voc) was 24 mV, 25 mV and 20 mV for the three dyes respectively. L. arboreus had Jsc of 0.034 mA/ cm2, 0.021 mA/ cm2 and 0.013 mA/ cm2; and corresponding Voc of 28 mV, 14.2 mV and 15 mV for the three electrolytes respectively. B. spectabilis recorded Jsc 0.023 mA/ cm2, 0.026 mA/ cm2 and 0.015 mA/ cm2; and corresponding Voc values of 6.2 mV, 14.3 mV and 4.0 mV for the three electrolytes respectively. It was observed that the fill factor (FF) was 0.140 for C. acuminata, 0.3198 for L. arboreus and 0.1138 for B. spectabilis. Internal conversions of 0.096%, 0.056% and 0.063% were recorded for three dyes when combined with (KBr + I) electrolyte. The internal efficiency of C. acuminata DSSC was highest in value.

Keywords: Dye-sensitized Solar Cells, Organic dye, C. acuminate, L. arboreus, B. spectabilis, Dye Mixture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1414
4563 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading

Authors: Laurent Pitteloud, Jörg Meier

Abstract:

Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were success­fully implemented for several high-rise buildings world­wide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be deter­mined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better under­standing of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measure­ments shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measure­ments are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.

Keywords: Dynamic loading, high-frequency monitoring, piled raft foundations, wind loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 776
4562 Perturbative Analysis on a Lunar Free Return Trajectory

Authors: Emre Ünal, Hasan Başaran

Abstract:

In this study, starting with a predetermined Lunar free-return trajectory, an analysis of major near-Earth perturbations is carried out. Referencing to historical Apollo-13 flight, changes in the mission’s resultant perimoon and perigee altitudes with each perturbative effect are evaluated. The perturbations that were considered are Earth oblateness effects, up to the 6th order, atmospheric drag, third body perturbations consisting of solar and planetary effects and solar radiation pressure effects. It is found that for a Moon mission, most of the main perturbative effects spoil the trajectory significantly while some came out to be negligible. It is seen that for apparent future request of constructing low cost, reliable and safe trajectories to the Moon, most of the orbital perturbations are crucial.

Keywords: Apollo-13 trajectory, atmospheric drag, lunar trajectories, oblateness effect, perturbative effects, solar radiation pressure, third body perturbations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 447
4561 Up Scaling of Highly Transparent Quasi-Solid State, Dye-Sensitized Solar Devices Composed of Nanocomposite Materials

Authors: Dimitra Sygkridou, Andreas Rapsomanikis, Elias Stathatos, Polycarpos Falaras, Evangelos Vitoratos

Abstract:

At the present work, highly transparent strip type quasi-solid state dye-sensitized solar cells (DSSCs) were fabricated through inkjet printing using nanocomposite TiO2 inks as raw materials and tested under outdoor illumination conditions. The cells, which can be considered as the structural units of large area modules, were fully characterized electrically and electrochemically and after the evaluation of the received results a large area DSSC module was manufactured. The module design was a sandwich Z-interconnection where the working electrode is deposited on one conductive glass and the counter electrode on a second glass. Silver current collective fingers were printed on the conductive glasses to make the internal electrical connections and the adjacent cells were connected in series and finally insulated using a UV curing resin to protect them from the corrosive (I-/I3-) redox couple of the electrolyte. Finally, outdoor tests were carried out to the fabricated dye-sensitized solar module and its performance data were collected and assessed.

Keywords: Dye-sensitized solar devices, inkjet printing, quasi-solid state electrolyte, transparency, up scaling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
4560 Efficiency Improvements of GaAs-based Solar Cells by Hydrothermally-deposited ZnO Nanostructure Array

Authors: Chun-Yuan Huang, Chiao-Yang Cheng, Chun-Yem Huang, Yan-Kuin Su, James Chin-Lung Fang

Abstract:

ZnO nanostructures including nanowires, nanorods, and nanoneedles were successfully deposited on GaAs substrates, respectively, by simple two-step chemical method for the first time. A ZnO seed layer was firstly pre-coated on the O2-plasma treated substrate by sol-gel process, followed by the nucleation of ZnO nanostructures through hydrothermal synthesis. Nanostructures with different average diameter (15-250 nm), length (0.9-1.8 μm), density (0.9-16×109 cm-2) were obtained via adjusting the growth time and concentration of precursors. From the reflectivity spectra, we concluded ordered and taper nanostructures were preferential for photovoltaic applications. ZnO nanoneedles with an average diameter of 106 nm, a moderate length of 2.4 μm, and the density of 7.2×109 cm-2 could be synthesized in the concentration of 0.04 M for 18 h. Integrated with the nanoneedle array, the power conversion efficiency of single junction solar cell was increased from 7.3 to 12.2%, corresponding to a 67% improvement.

Keywords: Anti-reflection, Chemical synthesis, Solar cells, ZnO nanostructures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
4559 Resilience Assessment for Power Distribution Systems

Authors: Berna Eren Tokgoz, Mahdi Safa, Seokyon Hwang

Abstract:

Power distribution systems are essential and crucial infrastructures for the development and maintenance of a sustainable society. These systems are extremely vulnerable to various types of natural and man-made disasters. The assessment of resilience focuses on preparedness and mitigation actions under pre-disaster conditions. It also concentrates on response and recovery actions under post-disaster situations. The aim of this study is to present a methodology to assess the resilience of electric power distribution poles against wind-related events. The proposed methodology can improve the accuracy and rapidity of the evaluation of the conditions and the assessment of the resilience of poles. The methodology provides a metric for the evaluation of the resilience of poles under pre-disaster and post-disaster conditions. The metric was developed using mathematical expressions for physical forces that involve various variables, such as physical dimensions of the pole, the inclination of the pole, and wind speed. A three-dimensional imaging technology (photogrammetry) was used to determine the inclination of poles. Based on expert opinion, the proposed metric was used to define zones to visualize resilience. Visual representation of resilience is helpful for decision makers to prioritize their resources before and after experiencing a wind-related disaster. Multiple electric poles in the City of Beaumont, TX were used in a case study to evaluate the proposed methodology.  

Keywords: Photogrammetry, power distribution systems, resilience metric, system resilience, wind-related disasters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
4558 An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

Authors: S. Sieniutycz

Abstract:

This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.

Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
4557 Scenario Analysis of Indonesia's Energy Security by using a System-Dynamics Approach

Authors: Yudha Prambudia, Masaru Nakano

Abstract:

Due to rapid economic growth, Indonesia's energy needs is rapidly increasing. Indonesia-s primary energy consumption has doubled in 2007 compared to 2003. Indonesia's status change from oil net-exporter to oil net-importer country recently has increased Indonesia's concern over energy security. Due to this, oil import becomes center of attention in the dynamics of Indonesia's energy security. Conventional studies addressing Indonesia's energy security have focused on energy production sector. This study explores Indonesia-s energy security considering energy import sector by modeling and simulating Indonesia-s energy-related policies using system dynamics. Simulation result of Indonesia's energy security in 2020 in Business-As-Usual scenario shows that in term of supply demand ratio, energy security will be very high, but also it poses high dependence on energy import. The Alternative scenario result shows lower energy security in term of supply demand ratio and much lower dependence on energy import. It is also found that the Alternative scenario produce lower GDP growth.

Keywords: Energy security, modeling, simulation, system dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
4556 Numerical Analysis of the Performance of the DU91-W2-250 Airfoil for Straight-Bladed Vertical-Axis Wind Turbine Application

Authors: M. Raciti Castelli, G. Grandi, E. Benini

Abstract:

This paper presents a numerical analysis of the performance of a three-bladed Darrieus vertical-axis wind turbine based on the DU91-W2-250 airfoil. A complete campaign of 2-D simulations, performed for several values of tip speed ratio and based on RANS unsteady calculations, has been performed to obtain the rotor torque and power curves. Rotor performances have been compared with the results of a previous work based on the use of the NACA 0021 airfoil. Both the power coefficient and the torque coefficient have been determined as a function of the tip speed ratio. The flow field around rotor blades has also been analyzed. As a final result, the performance of the DU airfoil based rotor appears to be lower than the one based on the NACA 0021 blade section. This behavior could be due to the higher stall characteristics of the NACA profile, being the separation zone at the trailing edge more extended for the DU airfoil.

Keywords: CFD, vertical axis wind turbine, DU91-W2-250, NACA 0021

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3331
4555 Vibroacoustic Modulation of Wideband Vibrations and Its Possible Application for Windmill Blade Diagnostics

Authors: Abdullah Alnutayfat, Alexander Sutin, Dong Liu

Abstract:

Wind turbine has become one of the most popular energy production methods. However, failure of blades and maintenance costs evolve into significant issues in the wind power industry, so it is essential to detect the initial blade defects to avoid the collapse of the blades and structure. This paper aims to apply modulation of high-frequency blade vibrations by low-frequency blade rotation, which is close to the known Vibro-Acoustic Modulation (VAM) method. The high-frequency wideband blade vibration is produced by the interaction of the surface blades with the environment air turbulence, and the low-frequency modulation is produced by alternating bending stress due to gravity. The low-frequency load of rotational wind turbine blades ranges between 0.2-0.4 Hz and can reach up to 2 Hz for strong wind. The main difference between this study and previous ones on VAM methods is the use of a wideband vibration signal from the blade's natural vibrations. Different features of the VAM are considered using a simple model of breathing crack. This model considers the simple mechanical oscillator, where the parameters of the oscillator are varied due to low-frequency blade rotation. During the blade's operation, the internal stress caused by the weight of the blade modifies the crack's elasticity and damping. The laboratory experiment using steel samples demonstrates the possibility of VAM using a probe wideband noise signal. A cycle load with a small amplitude was used as a pump wave to damage the tested sample, and a small transducer generated a wideband probe wave. The received signal demodulation was conducted using the Detecting of Envelope Modulation on Noise (DEMON) approach. In addition, the experimental results were compared with the modulation index (MI) technique regarding the harmonic pump wave. The wideband and traditional VAM methods demonstrated similar sensitivity for earlier detection of invisible cracks. Importantly, employing a wideband probe signal with the DEMON approach speeds up and simplifies testing since it eliminates the need to conduct tests repeatedly for various harmonic probe frequencies and to adjust the probe frequency.

Keywords: Damage detection, turbine blades, Vibro-Acoustic Structural Health Monitoring, SHM, Detecting of Envelope Modulation on Noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 392
4554 Energy Management Techniques in Mobile Robots

Authors: G. Gurguze, I. Turkoglu

Abstract:

Today, the developing features of technological tools with limited energy resources have made it necessary to use energy efficiently. Energy management techniques have emerged for this purpose. As with every field, energy management is vital for robots that are being used in many areas from industry to daily life and that are thought to take up more spaces in the future. Particularly, effective power management in autonomous and multi robots, which are getting more complicated and increasing day by day, will improve the performance and success. In this study, robot management algorithms, usage of renewable and hybrid energy sources, robot motion patterns, robot designs, sharing strategies of workloads in multiple robots, road and mission planning algorithms are discussed for efficient use of energy resources by mobile robots. These techniques have been evaluated in terms of efficient use of existing energy resources and energy management in robots.

Keywords: Energy management, mobile robot, robot administration, robot management, robot planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
4553 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: Crossover technologies, data management, energy analysis, energy efficiency, process control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934
4552 Comprehensive Assessment of Energy Efficiency within the Production Process

Authors: S. Kreitlein, N. Eder, A. Syed-Khaja, J. Franke

Abstract:

The importance of energy efficiency within the production processes increases steadily. For a comprehensive assessment of energy efficiency within the production process, unfortunately no tools exist or have been developed yet. Therefore the Institute for Factory Automation and Production Systems at the Friedrich-Alexander-University Erlangen-Nuremberg has developed two methods with the goal of achieving transparency and a quantitative assessment of energy efficiency namely EEV (Energy Efficiency Value) and EPE (Energetic Process Efficiency). This paper describes the basics and state-of-the-art as well as the developed approaches.

Keywords: Energy efficiency, energy efficiency value, energetic process efficiency, production.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261