**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31014

##### An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

**Authors:**
S. Sieniutycz

**Abstract:**

**Keywords:**
Fuel Cells,
Exergy,
Power yield,
entropy production,
chemical engines

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1059909

**References:**

[1] S. Sieniutycz, "A synthesis of thermodynamic models unifying traditional and work-driven operations with heat and mass exchange". Open Sys. & Information Dynamics, vol. 10, no.1, pp. 31-49, 2003.

[2] F..L. Curzon and B. Ahlborn, "Efficiency of Carnot engine at maximum power output". American J. Phys., vol. 43, no.1, pp. 22-24, 1975.

[3] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, pp. 30-41, 1994.

[4] S. Sieniutycz and P. Kuran, "Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy", Intern. J. Heat Mass Transfer, vol. 48, no. 3-4, pp. 719-730, 2005.

[5] S. Sieniutycz and P. Kuran, "Modeling thermal behavior and work flux in finite-rate systems with radiation". Intern. J. Heat and Mass Transfer, vol. 49, no. 17-18, pp. 3264-3283, 2006.

[6] S. Sieniutycz, "Dynamic programming and Lagrange multipliers for active relaxation of resources in non-equilibrium systems", Applied Mathematical Modeling, vol. 33, no. 3, pp. 1457-1478, 2009.

[7] P. Kuran, Nonlinear Models of Production of Mechanical Energy in Non-Ideal Generators Driven by Thermal or Solar Energy, PhD Thesis, Warsaw University of Technology, 2006.

[8] R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast, and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Chichester, Wiley, 2000, p.197, 200.

[9] S. Sieniutycz, "Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industrial Systems", Progress in Energy and Combustion Science, vol. 29, pp. 193-246, 2003.

[10] S. Sieniutycz, "Carnot controls to unify traditional and work-assisted operations with heat & mass transfer", International Journal of Applied Thermodynamics, vol. 6, np. 2, pp. 59-67, 2003.

[11] S. Sieniutycz and J. Je┼£owski, Energy Optimization in Process Systems, Oxford, Elsevier, 2009.

[12] S. Sieniutycz, "An analysis of power and entropy generation in a chemical engine", Intern. J. of Heat and Mass Transfer, vol. 51, no. 25- 26, pp. 5859-5871, 2008.

[13] R. Bellman, Adaptive Control Processes: a Guided Tour, Princeton University Press, 1961.

[14] R. Petela, "Exergy of heat radiation", J. Heat Transfer, vol. 86, no.2, pp.187-192, 1964.

[15] J. Jeter, J., "Maximum conversion efficiency for the utilization of direct solar radiation", Solar Energy, vol. 26, no. 3, pp. 231-236, 1981.

[16] A.M. Tsirlin, V. Kazakov, V.A. Mironova, and S.A. Amelkin, "Finitetime thermodynamics: conditions of minimal dissipation for thermodynamic process", Physical Review E, vol. 58, no. 1, pp. 215- 223, 1998.

[17] S. Sieniutycz, "Complex chemical systems with power production driven by mass transfer", Intern. J. of Heat and Mass Transfer, vol. 52, no.10, pp. 2453-2465, 2009.

[18] Y. Zhao, C. Ou, and J. Chen. "A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells". International Journal of Hydrogen Energy, vol. 33, no.1, pp. 4161- 4170, 2008.

[19] M. Wierzbicki, Optimization of SOFC based energy system using Aspen PlusTM, MsD Thesis supervised by S. Sieniutycz (Faculty of Chemical and Process Engineering, Warsaw TU) and J. Jewulski (Laboratory of Fuel Cells, Warsaw Institute of Energetics), Warsaw, 2009.

[20] T. J. Kotas, Exergy Method of Thermal Plant Analysis, Butterworths, Borough Green, 1985, pp. 2-19.

[21] M. M. Mench, Fuel Cell Engines, Hoboken (N.J), Wiley, 2008.

[22] J.T. Pukrushpan, A.G., Stefanopoulou and H. Peng, Control of Fuel Cell Power Systems, London, Springer, 2004

[23] S. Sieniutycz, "Dynamical converters with power-producing relaxation of solar radiation", Intern. Journal of Thermal Sciences, vol. 66, pp. 219-231, 2007.

[24] Y. Zhao, J. Chen, "Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria", Journal of Power Sources, vol. 186, pp. 96-103, 2009.