An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
An Unified Approach to Thermodynamics of Power Yield in Thermal, Chemical and Electrochemical Systems

Authors: S. Sieniutycz

Abstract:

This paper unifies power optimization approaches in various energy converters, such as: thermal, solar, chemical, and electrochemical engines, in particular fuel cells. Thermodynamics leads to converter-s efficiency and limiting power. Efficiency equations serve to solve problems of upgrading and downgrading of resources. While optimization of steady systems applies the differential calculus and Lagrange multipliers, dynamic optimization involves variational calculus and dynamic programming. In reacting systems chemical affinity constitutes a prevailing component of an overall efficiency, thus the power is analyzed in terms of an active part of chemical affinity. The main novelty of the present paper in the energy yield context consists in showing that the generalized heat flux Q (involving the traditional heat flux q plus the product of temperature and the sum products of partial entropies and fluxes of species) plays in complex cases (solar, chemical and electrochemical) the same role as the traditional heat q in pure heat engines. The presented methodology is also applied to power limits in fuel cells as to systems which are electrochemical flow engines propelled by chemical reactions. The performance of fuel cells is determined by magnitudes and directions of participating streams and mechanism of electric current generation. Voltage lowering below the reversible voltage is a proper measure of cells imperfection. The voltage losses, called polarization, include the contributions of three main sources: activation, ohmic and concentration. Examples show power maxima in fuel cells and prove the relevance of the extension of the thermal machine theory to chemical and electrochemical systems. The main novelty of the present paper in the FC context consists in introducing an effective or reduced Gibbs free energy change between products p and reactants s which take into account the decrease of voltage and power caused by the incomplete conversion of the overall reaction.

Keywords: Power yield, entropy production, chemical engines, fuel cells, exergy.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1059909

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1644

References:


[1] S. Sieniutycz, "A synthesis of thermodynamic models unifying traditional and work-driven operations with heat and mass exchange". Open Sys. & Information Dynamics, vol. 10, no.1, pp. 31-49, 2003.
[2] F..L. Curzon and B. Ahlborn, "Efficiency of Carnot engine at maximum power output". American J. Phys., vol. 43, no.1, pp. 22-24, 1975.
[3] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, pp. 30-41, 1994.
[4] S. Sieniutycz and P. Kuran, "Nonlinear models for mechanical energy production in imperfect generators driven by thermal or solar energy", Intern. J. Heat Mass Transfer, vol. 48, no. 3-4, pp. 719-730, 2005.
[5] S. Sieniutycz and P. Kuran, "Modeling thermal behavior and work flux in finite-rate systems with radiation". Intern. J. Heat and Mass Transfer, vol. 49, no. 17-18, pp. 3264-3283, 2006.
[6] S. Sieniutycz, "Dynamic programming and Lagrange multipliers for active relaxation of resources in non-equilibrium systems", Applied Mathematical Modeling, vol. 33, no. 3, pp. 1457-1478, 2009.
[7] P. Kuran, Nonlinear Models of Production of Mechanical Energy in Non-Ideal Generators Driven by Thermal or Solar Energy, PhD Thesis, Warsaw University of Technology, 2006.
[8] R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast, and A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Chichester, Wiley, 2000, p.197, 200.
[9] S. Sieniutycz, "Thermodynamic Limits on Production or Consumption of Mechanical Energy in Practical and Industrial Systems", Progress in Energy and Combustion Science, vol. 29, pp. 193-246, 2003.
[10] S. Sieniutycz, "Carnot controls to unify traditional and work-assisted operations with heat & mass transfer", International Journal of Applied Thermodynamics, vol. 6, np. 2, pp. 59-67, 2003.
[11] S. Sieniutycz and J. JeŜowski, Energy Optimization in Process Systems, Oxford, Elsevier, 2009.
[12] S. Sieniutycz, "An analysis of power and entropy generation in a chemical engine", Intern. J. of Heat and Mass Transfer, vol. 51, no. 25- 26, pp. 5859-5871, 2008.
[13] R. Bellman, Adaptive Control Processes: a Guided Tour, Princeton University Press, 1961.
[14] R. Petela, "Exergy of heat radiation", J. Heat Transfer, vol. 86, no.2, pp.187-192, 1964.
[15] J. Jeter, J., "Maximum conversion efficiency for the utilization of direct solar radiation", Solar Energy, vol. 26, no. 3, pp. 231-236, 1981.
[16] A.M. Tsirlin, V. Kazakov, V.A. Mironova, and S.A. Amelkin, "Finitetime thermodynamics: conditions of minimal dissipation for thermodynamic process", Physical Review E, vol. 58, no. 1, pp. 215- 223, 1998.
[17] S. Sieniutycz, "Complex chemical systems with power production driven by mass transfer", Intern. J. of Heat and Mass Transfer, vol. 52, no.10, pp. 2453-2465, 2009.
[18] Y. Zhao, C. Ou, and J. Chen. "A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells". International Journal of Hydrogen Energy, vol. 33, no.1, pp. 4161- 4170, 2008.
[19] M. Wierzbicki, Optimization of SOFC based energy system using Aspen PlusTM, MsD Thesis supervised by S. Sieniutycz (Faculty of Chemical and Process Engineering, Warsaw TU) and J. Jewulski (Laboratory of Fuel Cells, Warsaw Institute of Energetics), Warsaw, 2009.
[20] T. J. Kotas, Exergy Method of Thermal Plant Analysis, Butterworths, Borough Green, 1985, pp. 2-19.
[21] M. M. Mench, Fuel Cell Engines, Hoboken (N.J), Wiley, 2008.
[22] J.T. Pukrushpan, A.G., Stefanopoulou and H. Peng, Control of Fuel Cell Power Systems, London, Springer, 2004
[23] S. Sieniutycz, "Dynamical converters with power-producing relaxation of solar radiation", Intern. Journal of Thermal Sciences, vol. 66, pp. 219-231, 2007.
[24] Y. Zhao, J. Chen, "Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria", Journal of Power Sources, vol. 186, pp. 96-103, 2009.