Search results for: features reduction.
2423 Texture Characterization Based on a Chandrasekhar Fast Adaptive Filter
Authors: Mounir Sayadi, Farhat Fnaiech
Abstract:
In the framework of adaptive parametric modelling of images, we propose in this paper a new technique based on the Chandrasekhar fast adaptive filter for texture characterization. An Auto-Regressive (AR) linear model of texture is obtained by scanning the image row by row and modelling this data with an adaptive Chandrasekhar linear filter. The characterization efficiency of the obtained model is compared with the model adapted with the Least Mean Square (LMS) 2-D adaptive algorithm and with the cooccurrence method features. The comparison criteria is based on the computation of a characterization degree using the ratio of "betweenclass" variances with respect to "within-class" variances of the estimated coefficients. Extensive experiments show that the coefficients estimated by the use of Chandrasekhar adaptive filter give better results in texture discrimination than those estimated by other algorithms, even in a noisy context.
Keywords: Texture analysis, statistical features, adaptive filters, Chandrasekhar algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16152422 Effect of Two Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae var. acridum on the Haemolymph of the Desert Locust Schistocerca gregaria
Authors: Fatima Zohra Bissaad, Farid Bounaceur, Nassima Behidj, Nadjiba Chebouti, Fatma Halouane, Bahia Doumandji-Mitiche
Abstract:
Effect of Beauveria bassiana and Metarhizium anisopliae var. acridum on the 5th instar nymphs of Schistocerca gregaria was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 µg/100 ml of haemolymph in the control and M. anisopliae var. acridum, and B. bassiana based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9th day after its application.
Keywords: Beauveria bassiana, haemolymph picture, haemolymph protein, Metarhizium anisopliae var. acridum, Schistocerca gregaria.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14662421 Comparative Study Using Weka for Red Blood Cells Classification
Authors: Jameela Ali Alkrimi, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy
Abstract:
Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifying the RBCs as normal or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithms tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital - Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively.
Keywords: K-Nearest Neighbors, Neural Network, Radial Basis Function, Red blood cells, Support vector machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29952420 Automatic Staging and Subtype Determination for Non-Small Cell Lung Carcinoma Using PET Image Texture Analysis
Authors: Seyhan Karaçavuş, Bülent Yılmaz, Ömer Kayaaltı, Semra İçer, Arzu Taşdemir, Oğuzhan Ayyıldız, Kübra Eset, Eser Kaya
Abstract:
In this study, our goal was to perform tumor staging and subtype determination automatically using different texture analysis approaches for a very common cancer type, i.e., non-small cell lung carcinoma (NSCLC). Especially, we introduced a texture analysis approach, called Law’s texture filter, to be used in this context for the first time. The 18F-FDG PET images of 42 patients with NSCLC were evaluated. The number of patients for each tumor stage, i.e., I-II, III or IV, was 14. The patients had ~45% adenocarcinoma (ADC) and ~55% squamous cell carcinoma (SqCCs). MATLAB technical computing language was employed in the extraction of 51 features by using first order statistics (FOS), gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), and Laws’ texture filters. The feature selection method employed was the sequential forward selection (SFS). Selected textural features were used in the automatic classification by k-nearest neighbors (k-NN) and support vector machines (SVM). In the automatic classification of tumor stage, the accuracy was approximately 59.5% with k-NN classifier (k=3) and 69% with SVM (with one versus one paradigm), using 5 features. In the automatic classification of tumor subtype, the accuracy was around 92.7% with SVM one vs. one. Texture analysis of FDG-PET images might be used, in addition to metabolic parameters as an objective tool to assess tumor histopathological characteristics and in automatic classification of tumor stage and subtype.Keywords: Cancer stage, cancer cell type, non-small cell lung carcinoma, PET, texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9772419 Analysis of Endovascular Graft Features Affecting Endotension Following Endovascular Aneurysm Repair
Authors: Zeinab Hooshyar, Alireza Mehdizadeh
Abstract:
Endovascular aneurysm repair is a new and minimally invasive repair for patients with abdominal aortic aneurysm (AAA). This method has potential advantages that are incomparable with other repair methods. However, the enlargement of aneurysm in the absence of endoleak, which is known as endotension, may occur as one of post-operative compliances of this method. Typically, endotension is mainly as a result of pressure transmitted to aneurysm sac by endovascular installed graft. After installation of graft the aneurysm sac reduces significantly but remains non-zero. There are some factors which affect this pressure transmitted. In this study, the geometry features of installed vascular graft have been considered. It is inferred that graft neck angle and iliac bifurcation angle are two factors which can affect the drag force on graft and consequently the pressure transmitted to aneurysm.
Keywords: Endovascular graft, transmitted pressure, Drag force, Finite Element Modeling, neck angle, iliac bifurcation angle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15672418 What Have Banks Done Wrong?
Authors: F. May Liou, Y. C. Edwin Tang
Abstract:
This paper aims to provide a conceptual framework to examine competitive disadvantage of banks that suffer from poor performance. Banks generate revenues mainly from the interest rate spread on taking deposits and making loans while collecting fees in the process. To maximize firm value, banks seek loan growth and expense control while managing risk associated with loans with respect to non-performing borrowers or narrowing interest spread between assets and liabilities. Competitive disadvantage refers to the failure to access imitable resources and to build managing capabilities to gain sustainable return given appropriate risk management. This paper proposes a four-quadrant framework of organizational typology is subsequently proposed to examine the features of competitive disadvantage in the banking sector. A resource configuration model, which is extracted from CAMEL indicators to examine the underlying features of bank failures.
Keywords: Bank failure, CAMEL, competitive disadvantage, resource configuration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16492417 Analysis of Electrocardiograph (ECG) Signal for the Detection of Abnormalities Using MATLAB
Authors: Durgesh Kumar Ojha, Monica Subashini
Abstract:
The proposed method is to study and analyze Electrocardiograph (ECG) waveform to detect abnormalities present with reference to P, Q, R and S peaks. The first phase includes the acquisition of real time ECG data. In the next phase, generation of signals followed by pre-processing. Thirdly, the procured ECG signal is subjected to feature extraction. The extracted features detect abnormal peaks present in the waveform Thus the normal and abnormal ECG signal could be differentiated based on the features extracted. The work is implemented in the most familiar multipurpose tool, MATLAB. This software efficiently uses algorithms and techniques for detection of any abnormalities present in the ECG signal. Proper utilization of MATLAB functions (both built-in and user defined) can lead us to work with ECG signals for processing and analysis in real time applications. The simulation would help in improving the accuracy and the hardware could be built conveniently.
Keywords: ECG Waveform, Peak Detection, Arrhythmia, Matlab.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 120082416 A Power Reduction Technique for Built-In-Self Testing Using Modified Linear Feedback Shift Register
Authors: Mayank Shakya, Soundra Pandian. K. K
Abstract:
A linear feedback shift register (LFSR) is proposed which targets to reduce the power consumption from within. It reduces the power consumption during testing of a Circuit Under Test (CUT) at two stages. At first stage, Control Logic (CL) makes the clocks of the switching units of the register inactive for a time period when output from them is going to be same as previous one and thus reducing unnecessary switching of the flip-flops. And at second stage, the LFSR reorders the test vectors by interchanging the bit with its next and closest neighbor bit. It keeps fault coverage capacity of the vectors unchanged but reduces the Total Hamming Distance (THD) so that there is reduction in power while shifting operation.Keywords: Linear Feedback Shift Register, Total Hamming Distance, Fault Coverage, Control Logic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20262415 Eukaryotic Gene Prediction by an Investigation of Nonlinear Dynamical Modeling Techniques on EIIP Coded Sequences
Authors: Mai S. Mabrouk, Nahed H. Solouma, Abou-Bakr M. Youssef, Yasser M. Kadah
Abstract:
Many digital signal processing, techniques have been used to automatically distinguish protein coding regions (exons) from non-coding regions (introns) in DNA sequences. In this work, we have characterized these sequences according to their nonlinear dynamical features such as moment invariants, correlation dimension, and largest Lyapunov exponent estimates. We have applied our model to a number of real sequences encoded into a time series using EIIP sequence indicators. In order to discriminate between coding and non coding DNA regions, the phase space trajectory was first reconstructed for coding and non-coding regions. Nonlinear dynamical features are extracted from those regions and used to investigate a difference between them. Our results indicate that the nonlinear dynamical characteristics have yielded significant differences between coding (CR) and non-coding regions (NCR) in DNA sequences. Finally, the classifier is tested on real genes where coding and non-coding regions are well known.
Keywords: Gene prediction, nonlinear dynamics, correlation dimension, Lyapunov exponent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18252414 Reduction of Content of Lead and Zinc from Wastewater by Using of Metallurgical Waste
Authors: L. Rozumová, J. Seidlerová
Abstract:
The aim of this paper was to study the sorption properties of a blast furnace sludge used as the sorbent. The sorbent was utilized for reduction of content of lead and zinc ions. Sorbent utilized in this work was obtained from metallurgical industry from process of wet gas treatment in iron production. The blast furnace sludge was characterized by X-Ray diffraction, scanning electron microscopy, and XRFS spectroscopy. Sorption experiments were conducted in batch mode. The sorption of metal ions in the sludge was determined by correlation of adsorption isotherm models. The adsorption of lead and zinc ions was best fitted with Langmuir adsorption isotherms. The adsorption capacity of lead and zinc ions was 53.8 mg.g-1 and 10.7 mg.g-1, respectively. The results indicated that blast furnace sludge could be effectively used as secondary material and could be also employed as a low-cost alternative for the removal of heavy metals ions from wastewater.
Keywords: Blast furnace sludge, lead, zinc, sorption.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9062413 Orthosis and Finite Elements: A Study for Development of New Designs through Additive Manufacturing
Authors: M. Volpini, D. Alves, A. Horta, M. Borges, P. Reis
Abstract:
The gait pattern in people that present motor limitations foment the demand for auxiliary locomotion devices. These artifacts for movement assistance vary according to its shape, size and functional features, following the clinical applications desired. Among the ortheses of lower limbs, the ankle-foot orthesis aims to improve the ability to walk in people with different neuromuscular limitations, although they do not always answer patients' expectations for their aesthetic and functional characteristics. The purpose of this study is to explore the possibility of using new design in additive manufacturer to reproduce the shape and functional features of a ankle-foot orthesis in an efficient and modern way. Therefore, this work presents a study about the performance of the mechanical forces through the analysis of finite elements in an ankle-foot orthesis. It will be demonstrated a study of distribution of the stress on the orthopedic device in orthostatism and during the movement in the course of patient's walk.
Keywords: Additive manufacture, new designs, orthoses, finite elements.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11372412 Time-Frequency Modeling and Analysis of Faulty Rotor
Authors: B. X. Tchomeni, A. A. Alugongo, T. B. Tengen
Abstract:
In this paper, de Laval rotor system has been characterized by a hinge model and its transient response numerically treated for a dynamic solution. The effect of the ensuing non-linear disturbances namely rub and breathing crack is numerically simulated. Subsequently, three analysis methods: Orbit Analysis, Fast Fourier Transform (FFT), and Wavelet Transform (WT) are employed to extract features of the vibration signal of the faulty system. An analysis of the system response orbits clearly indicates the perturbations due to the rotor-to-stator contact. The sensitivities of WT to the variation in system speed have been investigated by Continuous Wavelet Transform (CWT). The analysis reveals that features of crack, rubs and unbalance in vibration response can be useful for condition monitoring. WT reveals its ability to detect nonlinear signal, and obtained results provide a useful tool method for detecting machinery faults.Keywords: Continuous wavelet, crack, discrete wavelet, high acceleration, low acceleration, nonlinear, rotor-stator, rub.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17122411 An Experimental Study of a Self-Supervised Classifier Ensemble
Authors: Neamat El Gayar
Abstract:
Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16442410 Improving the Effectiveness of Software Testing through Test Case Reduction
Authors: R. P. Mahapatra, Jitendra Singh
Abstract:
This paper proposes a new technique for improving the efficiency of software testing, which is based on a conventional attempt to reduce test cases that have to be tested for any given software. The approach utilizes the advantage of Regression Testing where fewer test cases would lessen time consumption of the testing as a whole. The technique also offers a means to perform test case generation automatically. Compared to one of the techniques in the literature where the tester has no option but to perform the test case generation manually, the proposed technique provides a better option. As for the test cases reduction, the technique uses simple algebraic conditions to assign fixed values to variables (Maximum, minimum and constant variables). By doing this, the variables values would be limited within a definite range, resulting in fewer numbers of possible test cases to process. The technique can also be used in program loops and arrays.Keywords: Software Testing, Test Case Generation, Test CaseReduction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30172409 A survey Method and new design Lecture Chair for Complied Ergonomics Guideline at Classroom Building 2 Suranaree University of Technology, Thailand
Authors: Sumalee B., Sirinapa L., Jenjira T., Jr., Setasak S.
Abstract:
The paper describes ergonomics problems trend of student at B5101 classroom building 2, Suranaree University of Technology. The objective to survey ergonomics problems and effect from use chairs for sitting in class room. The result from survey method 100 student they use lecture chair for sitting in classroom more than 2 hours/ day by RULA[1]. and Body discomfort survey[2]. The result from Body discomfort survey contribute fatigue problems at neck, lower back, upper back and right shoulder 2.93, 2.91, 2.33, 1.75 respectively and result from RULA contribute fatigue problems at neck, body and right upper arm 4.00, 3.75 and 3.00 respectively are consistent. After that the researcher provide improvement plan for design new chair support student fatigue reduction by prepare data of sample anthropometry and design ergonomics chair prototype 3 unit. Then sample 100 student trial to use new chair and evaluate again by RULA, Body discomfort and satisfaction. The result from trial new chair after improvement by RULA present fatigue reduction average of head and neck from 4.00 to 2.25 , body and trunk from 3.75 to 2.00 and arm force from 1.00 to 0.25 respectively. The result from trial new chair after improvement by Body discomfort present fatigue reduction average of lower back from 2.91 to 0.87, neck from 2.93 to 1.24, upper back 2.33 to 0.84 and right upper arm from 1.75 to 0.74. That statistical of RULA and Body discomfort survey present fatigue reduction after improvement significance with a confidence level of 95% (p-value 0.05). When analyzing the relationship of fatigue as part of the body by Chi – square test during RULA and Body discomfort that before and after improvements were consistent with the significant level of confidence 95% (p-value 0.05) . Moreover the students satisfaction result from trial with a new chair for 30 minutes [3]. 72 percent very satisfied of the folding of the secondary writing simple 66% the width of the writing plate, 64% the suitability of the writing plate, 62% of soft seat cushion and 61% easy to seat the chair.Keywords: Ergonomics, Work station design, ErgonomicsChair, Student, Fatigue
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34962408 Lookup Table Reduction and Its Error Analysis of Hall Sensor-Based Rotation Angle Measurement
Authors: Young-San Shin, Seongsoo Lee
Abstract:
Hall sensor is widely used to measure rotation angle. When the Hall voltage is measured for linear displacement, it is converted to angular displacement using arctangent function, which requires a large lookup table. In this paper, a lookup table reduction technique is presented for angle measurement. When the input of the lookup table is small within a certain threshold, the change of the outputs with respect to the change of the inputs is relatively small. Thus, several inputs can share same output, which significantly reduce the lookup table size. Its error analysis was also performed, and the threshold was determined so as to maintain the error less than 1°. When the Hall voltage has 11-bit resolution, the lookup table size is reduced from 1,024 samples to 279 samples.
Keywords: Hall sensor, angle measurement, lookup table, arctangent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15302407 A Development of English Pronunciation Using Principles of Phonetics for English Major Students at Loei Rajabhat University
Authors: Pongthep Bunrueng
Abstract:
This action research accentuates the outcome of a development in English pronunciation, using principles of phonetics for English major students at Loei Rajabhat University. The research is split into 5 separate modules: 1) Organs of Speech and How to Produce Sounds, 2) Monopthongs, 3) Diphthongs, 4) Consonant sounds, and 5) Suprasegmental Features. Each module followed a 4 step action research process, 1) Planning, 2) Acting, 3) Observing, and 4) Reflecting. The research targeted 2nd year students who were majoring in English Education at Loei Rajabhat University during the academic year of 2011. A mixed methodology employing both quantitative and qualitative research was used, which put theory into action, taking segmental features up to suprasegmental features. Multiple tools were employed which included the following documents: pre-test and post-test papers, evaluation and assessment papers, group work assessment forms, a presentation grading form, an observation of participants form and a participant self-reflection form.
All 5 modules for the target group showed that results from the post-tests were higher than those of the pre-tests, with 0.01 statistical significance. All target groups attained results ranging from low to moderate and from moderate to high performance. The participants who attained low to moderate results had to re-sit the second round. During the first development stage, participants attended classes with group participation, in which they addressed planning through mutual co-operation and sharing of responsibility. Analytic induction of strong points for this operation illustrated that learner cognition, comprehension, application, and group practices were all present whereas the participants with weak results could be attributed to biological differences, differences in life and learning, or individual differences in responsiveness and self-discipline.
Participants who were required to be re-treated in Spiral 2 received the same treatment again. Results of tests from the 5 modules after the 2nd treatment were that the participants attained higher scores than those attained in the pre-test. Their assessment and development stages also showed improved results. They showed greater confidence at participating in activities, produced higher quality work, and correctly followed instructions for each activity. Analytic induction of strong and weak points for this operation remains the same as for Spiral 1, though there were improvements to problems which existed prior to undertaking the second treatment.
Keywords: Action research, English pronunciation, phonetics, segmental features, suprasegmental features.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28532406 A Context-Sensitive Algorithm for Media Similarity Search
Authors: Guang-Ho Cha
Abstract:
This paper presents a context-sensitive media similarity search algorithm. One of the central problems regarding media search is the semantic gap between the low-level features computed automatically from media data and the human interpretation of them. This is because the notion of similarity is usually based on high-level abstraction but the low-level features do not sometimes reflect the human perception. Many media search algorithms have used the Minkowski metric to measure similarity between image pairs. However those functions cannot adequately capture the aspects of the characteristics of the human visual system as well as the nonlinear relationships in contextual information given by images in a collection. Our search algorithm tackles this problem by employing a similarity measure and a ranking strategy that reflect the nonlinearity of human perception and contextual information in a dataset. Similarity search in an image database based on this contextual information shows encouraging experimental results.
Keywords: Context-sensitive search, image search, media search, similarity ranking, similarity search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6402405 Feeder Reconfiguration for Loss Reduction in Unbalanced Distribution System Using Genetic Algorithm
Authors: Ganesh. Vulasala, Sivanagaraju. Sirigiri, Ramana. Thiruveedula
Abstract:
This paper presents an efficient approach to feeder reconfiguration for power loss reduction and voltage profile imprvement in unbalanced radial distribution systems (URDS). In this paper Genetic Algorithm (GA) is used to obtain solution for reconfiguration of radial distribution systems to minimize the losses. A forward and backward algorithm is used to calculate load flows in unbalanced distribution systems. By simulating the survival of the fittest among the strings, the optimum string is searched by randomized information exchange between strings by performing crossover and mutation. Results have shown that proposed algorithm has advantages over previous algorithms The proposed method is effectively tested on 19 node and 25 node unbalanced radial distribution systems.Keywords: Distribution system, Load flows, Reconfiguration, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32502404 Potential Use of Local Materials as Synthesizing One Part Geopolymer Cement
Authors: Areej Almalkawi, Sameer Hamadna, Parviz Soroushian, Nalin Darsana
Abstract:
The work on indigenous binders in this paper focused on the following indigenous raw materials: red clay, red lava and pumice (as primary aluminosilicate precursors), wood ash and gypsum (as supplementary minerals), and sodium sulfate and lime (as alkali activators). The experimental methods used for evaluation of these indigenous raw materials included laser granulometry, x-ray fluorescence (XRF) spectroscopy, and chemical reactivity. Formulations were devised for transforming these raw materials into alkali aluminosilicate-based hydraulic cements. These formulations were processed into hydraulic cements via simple heating and milling actions to render thermal activation, mechanochemical and size reduction effects. The resulting hydraulic cements were subjected to laser granulometry, heat of hydration and reactivity tests. These cements were also used to prepare mortar mixtures, which were evaluated via performance of compressive strength tests. The measured values of strength were correlated with the reactivity, size distribution and microstructural features of raw materials. Some of the indigenous hydraulic cements produced in this reporting period yielded viable levels of compressive strength. The correlation trends established in this work are being evaluated for development of simple and thorough methods of qualifying indigenous raw materials for use in production of indigenous hydraulic cements.
Keywords: One-part geopolymer cement, aluminosilicate precursors, thermal activation, mechanochemical.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7032403 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18222402 Wavelet-Based Despeckling of Synthetic Aperture Radar Images Using Adaptive and Mean Filters
Authors: Syed Musharaf Ali, Muhammad Younus Javed, Naveed Sarfraz Khattak
Abstract:
In this paper we introduced new wavelet based algorithm for speckle reduction of synthetic aperture radar images, which uses combination of undecimated wavelet transformation, wiener filter (which is an adaptive filter) and mean filter. Further more instead of using existing thresholding techniques such as sure shrinkage, Bayesian shrinkage, universal thresholding, normal thresholding, visu thresholding, soft and hard thresholding, we use brute force thresholding, which iteratively run the whole algorithm for each possible candidate value of threshold and saves each result in array and finally selects the value for threshold that gives best possible results. That is why it is slow as compared to existing thresholding techniques but gives best results under the given algorithm for speckle reduction.
Keywords: Brute force thresholding, directional smoothing, direction dependent mask, undecimated wavelet transformation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28802401 Treatment of Tannery Effluents by the Process of Coagulation
Authors: G. Shegani
Abstract:
Coagulation is a process that sanitizes leather effluents. It aims to reduce pollutants such as Chemical Oxygen Demand (COD), chloride, sulfate, chromium, suspended solids, and other dissolved solids. The current study aimed to evaluate coagulation efficiency of tannery wastewater by analyzing the change in organic matter, odor, color, ammonium ions, nutrients, chloride, H2S, sulfate, suspended solids, total dissolved solids, fecal pollution, and chromium hexavalent before and after treatment. Effluent samples were treated with coagulants Ca(OH)2 and FeSO4 .7H2O. The best advantages of this treatment included the removal of: COD (81.60%); ammonia ions (98.34%); nitrate ions (92%); chromium hexavalent (75.00%); phosphate (70.00%); chloride (69.20%); and H₂S (50%). Results also indicated a high level of efficiency in the reduction of fecal pollution indicators. Unfortunately, only a modest reduction of sulfate (19.00%) and TSS (13.00%) and an increase in TDS (15.60%) was observed.
Keywords: Coagulation, Effluent, Tannery, Treatment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41622400 Reducing CO2 Emission Using EDA and Weighted Sum Model in Smart Parking System
Authors: Rahman Ali, Muhammad Sajjad, Farkhund Iqbal, Muhammad Sadiq Hassan Zada, Mohammed Hussain
Abstract:
Emission of Carbon Dioxide (CO2) has adversely affected the environment. One of the major sources of CO2 emission is transportation. In the last few decades, the increase in mobility of people using vehicles has enormously increased the emission of CO2 in the environment. To reduce CO2 emission, sustainable transportation system is required in which smart parking is one of the important measures that need to be established. To contribute to the issue of reducing the amount of CO2 emission, this research proposes a smart parking system. A cloud-based solution is provided to the drivers which automatically searches and recommends the most preferred parking slots. To determine preferences of the parking areas, this methodology exploits a number of unique parking features which ultimately results in the selection of a parking that leads to minimum level of CO2 emission from the current position of the vehicle. To realize the methodology, a scenario-based implementation is considered. During the implementation, a mobile application with GPS signals, vehicles with a number of vehicle features and a list of parking areas with parking features are used by sorting, multi-level filtering, exploratory data analysis (EDA, Analytical Hierarchy Process (AHP)) and weighted sum model (WSM) to rank the parking areas and recommend the drivers with top-k most preferred parking areas. In the EDA process, “2020testcar-2020-03-03”, a freely available dataset is used to estimate CO2 emission of a particular vehicle. To evaluate the system, results of the proposed system are compared with the conventional approach, which reveal that the proposed methodology supersedes the conventional one in reducing the emission of CO2 into the atmosphere.
Keywords: CO2 emission, IoT, EDA, Weighted Sum Model, WSM, regression, smart parking system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7432399 A Novel Model for Simultaneously Minimising Costs and Risks in Just-in-Time Systems Using Multi-Backup Suppliers: Part 2- Results
Authors: Faraj El Dabee, Romeo Marian, Yousef Amer
Abstract:
This paper implements the inventory model developed in the first part of this paper in a simplified problem to simultaneously reduce costs and risks in JIT systems. This model is developed to ascertain an optimal ordering strategy for procuring raw materials by using regular multi-external and local backup suppliers to reduce the total cost of the products, and at the same time to reduce the risks arising from this cost reduction within production systems. A comparison between the cost of using the JIT system and using the proposed inventory model shows the superiority of the use of the inventory model.
Keywords: Lean manufacturing, Just-in-Time (JIT), production system, cost-risk reduction, inventory model, eternal supplier, local backup supplier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472398 Automatic Classification of the Stand-to-Sit Phase in the TUG Test Using Machine Learning
Authors: Y. A. Adla, R. Soubra, M. Kasab, M. O. Diab, A. Chkeir
Abstract:
Over the past several years, researchers have shown a great interest in assessing the mobility of elderly people to measure their functional status. Usually, such an assessment is done by conducting tests that require the subject to walk a certain distance, turn around, and finally sit back down. Consequently, this study aims to provide an at home monitoring system to assess the patient’s status continuously. Thus, we proposed a technique to automatically detect when a subject sits down while walking at home. In this study, we utilized a Doppler radar system to capture the motion of the subjects. More than 20 features were extracted from the radar signals out of which 11 were chosen based on their Intraclass Correlation Coefficient (ICC > 0.75). Accordingly, the sequential floating forward selection wrapper was applied to further narrow down the final feature vector. Finally, five features were introduced to the Linear Discriminant Analysis classifier and an accuracy of 93.75% was achieved as well as a precision and recall of 95% and 90% respectively.
Keywords: Doppler radar system, stand-to-sit phase, TUG test, machine learning, classification
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4542397 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13142396 Differential Protection for Power Transformer Using Wavelet Transform and PNN
Authors: S. Sendilkumar, B. L. Mathur, Joseph Henry
Abstract:
A new approach for protection of power transformer is presented using a time-frequency transform known as Wavelet transform. Different operating conditions such as inrush, Normal, load, External fault and internal fault current are sampled and processed to obtain wavelet coefficients. Different Operating conditions provide variation in wavelet coefficients. Features like energy and Standard deviation are calculated using Parsevals theorem. These features are used as inputs to PNN (Probabilistic neural network) for fault classification. The proposed algorithm provides more accurate results even in the presence of noise inputs and accurately identifies inrush and fault currents. Overall classification accuracy of the proposed method is found to be 96.45%. Simulation of the fault (with and without noise) was done using MATLAB AND SIMULINK software taking 2 cycles of data window (40 m sec) containing 800 samples. The algorithm was evaluated by using 10 % Gaussian white noise.Keywords: Power Transformer, differential Protection, internalfault, inrush current, Wavelet Energy, Db9.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31312395 Development and Control of Deep Seated Gravitational Slope Deformation: The Case of Colzate-Vertova Landslide, Bergamo, Northern Italy
Authors: Paola Comella, Vincenzo Francani, Paola Gattinoni
Abstract:
This paper presents the Colzate-Vertova landslide, a Deep Seated Gravitational Slope Deformation (DSGSD) located in the Seriana Valley, Northern Italy. The paper aims at describing the development as well as evaluating the factors that influence the evolution of the landslide. After defining the conceptual model of the landslide, numerical simulations were developed using a finite element numerical model, first with a two-dimensional domain, and later with a three-dimensional one. The results of the 2-D model showed a displacement field typical of a sackung, as a consequence of the erosion along the Seriana Valley. The analysis also showed that the groundwater flow could locally affect the slope stability, bringing about a reduction in the safety factor, but without reaching failure conditions. The sensitivity analysis carried out on the strength parameters pointed out that slope failures could be reached only for relevant reduction of the geotechnical characteristics. Such a result does not fit the real conditions observed on site, where a number of small failures often develop all along the hillslope. The 3-D model gave a more comprehensive analysis of the evolution of the DSGSD, also considering the border effects. The results showed that the convex profile of the slope favors the development of displacements along the lateral valley, with a relevant reduction in the safety factor, justifying the existing landslides.
Keywords: Deep seated gravitational slope deformation, Italy, landslide, numerical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10252394 Effect of Windrow Management on Ammonia and Nitrous Oxide Emissions from Swine Manure Composting
Authors: Nanh Lovanh, John Loughrin, Kimberly Cook, Phil Silva, Byung-Taek Oh
Abstract:
In the era of sustainability, utilization of livestock wastes as soil amendment to provide micronutrients for crops is very economical and sustainable. It is well understood that livestock wastes are comparable, if not better, nutrient sources for crops as chemical fertilizers. However, the large concentrated volumes of animal manure produced from livestock operations and the limited amount of available nearby agricultural land areas necessitated the need for volume reduction of these animal wastes. Composting of these animal manures is a viable option for biomass and pathogenic reduction in the environment. Nevertheless, composting also increases the potential loss of available nutrients for crop production as well as unwanted emission of anthropogenic air pollutants due to the loss of ammonia and other compounds via volatilization. In this study, we examine the emission of ammonia and nitrous oxide from swine manure windrows to evaluate the benefit of biomass reduction in conjunction with the potential loss of available nutrients. The feedstock for the windrows was obtained from swine farm in Kentucky where swine manure was mixed with wood shaving as absorbent material. Static flux chambers along with photoacoustic gas analyzer were used to monitor ammonia and nitrous oxide concentrations during the composting process. The results show that ammonia and nitrous oxide fluxes were quite high during the initial composting process and after the turning of each compost pile. Over the period of roughly three months of composting, the biochemical oxygen demand (BOD) decreased by about 90%. Although composting of animal waste is quite beneficial for biomass reduction, composting may not be economically feasible from an agronomical point of view due to time, nutrient loss (N loss), and potential environmental pollution (ammonia and greenhouse gas emissions). Therefore, additional studies are needed to assess and validate the economics and environmental impact of animal (swine) manure composting (e.g., crop yield or impact on climate change).
Keywords: Windrow, swine manure, ammonia, nitrous oxide, fluxes, management.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1975