
 

 

 
Abstract—Seizure is the main factor that affects the quality of 

life of epileptic patients. The diagnosis of epilepsy, and hence the 
identification of epileptogenic zone, is commonly made by using 
continuous Electroencephalogram (EEG) signal monitoring. Seizure 
identification on EEG signals is made manually by epileptologists 
and this process is usually very long and error prone. The aim of this 
paper is to describe an automated method able to detect seizures in 
EEG signals, using knowledge discovery in database process and data 
mining methods and algorithms, which can support physicians during 
the seizure detection process. Our detection method is based on 
Artificial Neural Network classifier, trained by applying the 
multilayer perceptron algorithm, and by using a software application, 
called Training Builder that has been developed for the massive 
extraction of features from EEG signals. This tool is able to cover all 
the data preparation steps ranging from signal processing to data 
analysis techniques, including the sliding window paradigm, the 
dimensionality reduction algorithms, information theory, and feature 
selection measures. The final model shows excellent performances, 
reaching an accuracy of over 99% during tests on data of a single 
patient retrieved from a publicly available EEG dataset. 
 

Keywords—Artificial Neural Network, Data Mining, 
Electroencephalogram, Epilepsy, Feature Extraction, Seizure 
Detection, Signal Processing. 

I. INTRODUCTION 

PILEPSY is a neurological disorder characterized by 
recurrent seizures caused by abnormal electrical 

discharges from the brain cells. Characteristics of seizures 
vary and depend on many factors, such as where they originate 
in the brain, the daily frequency and so on. Depending on the 
type of seizures, different kinds of side effects for the patients 
are possible, which severely impact their quality of life and 
their social, physiological and physical interactions. The 
ultimate goal of epilepsy treatment is to provide seizure 
control for all patients; however, only 70% of patients respond 
to medical treatments [1], while for the remaining 30% other 
approaches are needed to manage the disease. To accurately 
diagnose and treat epilepsy patients, precise seizure 
documentation by the patient himself or relatives is essential 
for good clinical and scientific practice, but information 
provided by patients or by their relatives is often incomplete 
and more than half of the seizures identified in long-term 
video EEG monitoring are not reported [2], so more precise 
measurements are needed. 

 
Gaetano Zazzaro, Angelo Martone and Roberto V. Montaquila are with the 

Italian Aerospace Research Centre (CIRA), Capua (CE), Italy (phone: +39-
0823-623558, e-mail: g.zazzaro@cira.it, {a.martone, r.montaquila}@cira.it). 

Luigi Pavone is with IRCCS Neuromed, Pozzilli (IS), Italy, (e-mail: 
bioingegneria@neuromed.it). 

The most commonly used tool in the clinical practice to 
monitor and diagnose epilepsy is EEG signal, recorded either 
from the scalp (scalp-EEG) or intracranially (iEEG). The 
Scalp-EEG is recorded by placing the electrodes on the 
surface of scalp by using international standard 10–20 system 
[3], while the iEEG is caught by placing the electrodes directly 
on the surface of brain or in deep regions of the brain. For 
drug-resistant patients or for patients for which the diagnosis 
is not clear after the ambulatory screening, long-term EEG 
monitoring is needed, both for confirming the diagnosis of 
epilepsy, and for localizing the brain region producing the 
seizures [4]. Continuous EEG monitoring is often 
accompanied with video recording (video-EEG), synchronized 
with EEG, in order to detect behavioral phenomena that can 
help to classify the type of a seizure. In fact, long-term video-
EEG monitoring provides information about seizure 
semiology, inter-ictal abnormalities, and ictal rhythms. It is a 
definitive method to differentiate between seizures and non-
epileptic events, to classify seizures, and to localize the ictal 
onset zone. 

Seizures are manifested in EEG as paroxysmal high-
amplitude graphic elements, created by excessive neuronal 
synchronous discharges and their detection on EEG is 
commonly made manually, by visual inspection of 
epileptologists. The big amount of data generally available for 
each patient makes this work hard and long-lasting, so 
computerized and automated methods for seizure detection are 
needed in order to provide a valuable tool for clinicians to 
speed up the process of seizure detection and at the same time 
to provide precious and accurate data for epilepsy diagnosis 
and management. Almost all automated methods for seizure 
detection in EEG consist of extraction of features from the 
EEG signal and then the use of the Data Mining (DM) 
approach for feature selection and seizures classification.  

In this paper, we present a seizure detection method based 
on the extraction of 26 features by means of an ad-hoc 
implemented software tool called Training Builder and 
seizures classification using DM techniques such as Artificial 
Neural Networks. 

II. STATE OF THE ART 

A. Most Recent Ideas and Methods for Seizure Detection 

Until now, many studies had focused on developing 
automated seizure detection methods using EEG signals (both 
scalp or intracranial) not only for helping epileptologists in 
diagnose epilepsy and detect seizures from EEG but also for 
developing closed-loop therapies for epilepsy treatment. 
Closed-loop systems should be able to recognize seizures from 
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EEG and then try to abort seizures by, for example, sending an 
alarm to the patient or by stimulating electrically the site 
where the seizure started. Each of those seizure detection 
methods consist of a feature extraction step from brain signals 
and a feature classification and selection step. In the recent 
past, a considerable number of features have been used as 
markers for seizure detection, such as features based on time-
frequency analysis [5]-[7], entropy-based approaches [8], [9], 
wavelet transform [10], [11], multivariate analysis [12] and 
recurrence plot based features [13]. Similarly, many types of 
classifier have been used, such as Convolutional Neural Net 
[14], [15], Bayesian classifier [16], Deep Neural Net [17], and 
fuzzy-rule based [18]. In the last years, DM approaches are 
becoming the gold standard approach in the field of seizure 
detection and many approaches have been proposed [19]-[21]. 

B. Data Mining Process for Seizure Detection 

Fig. 1 shows the general process flow for seizure detection.  

  

Fig. 1 Process flow for seizure detection 
 
The process is a customization of the Knowledge Discovery 

in the Database Process (KDD), widely used for DM tasks 
[22]-[24]. The figure also displays, in the blue box, the 
functionalities of an implemented SW tool, called Training 
Builder, useful in the data preparation step: from signal 
processing to features calculation. In the next sections, all the 
steps of this process are described. 

C. Data Mining Goal 

This paper describes how to develop an algorithm able to 
detect seizures from EEG recordings of epileptic patients, 
using DM techniques, in order to automatically detect 
seizures. We approached the problem of seizure detection as a 
problem of binary classification, whose aim is to discriminate 
EEG signals containing seizures from EEG signals without 
seizures. Moreover, classification models are trained in order 
to detect the incipit of epileptic seizures.  

III. DATA UNDERSTANDING AND PREPARATION 

A. Freiburg Seizure EEG Database 

In order to test our algorithm, we used data from the 
Freiburg Seizure Prediction EEG database (FSPEEG) [25], 
[26]. The database contains intracranial EEG recordings of 21 
patients with drug-resistant epilepsy acquired during invasive 

presurgical epilepsy monitoring at the Epilepsy Center of the 
University Hospital of Freiburg, Germany. Recordings were at 
256 Hz sampling rate with 16-bit A/D converter. Two expert 
epileptologists selected six EEG channels from the total 
number of available channels, three located near to the 
epileptogenic area started or where seizure activity had been 
detected (“InFokus” channels) and the remaining three located 
quite far from the seizure focus, where no seizure activity had 
been detected (“OutFokus” channels). For each patient, there 
are the “ictal” recordings, containing seizures, and “preictal” 
recordings, which are recordings acquired immediately before 
or after the ictal phase, but without seizures. For this study, we 
used only data from one representative patient (patient number 
3), in order to evaluate the performance of our algorithm. 

B. Signal Processing 

Analog signals are quite often affected by different kind of 
noise, in particular by quantization noise, which is due to the 
process of Analog Digital Conversion (ADC). Hence, it is 
fundamental to filter EEG signals before any other processing 
[27], [28]. 

By using a band-pass filtering, the EEG signals (acquired 
from each InFokus/OutFokus electrode) was filtered through 
six different frequency bands (8-12 Hz, 13-20 Hz, 21-30 Hz, 
30-45 Hz, 40-70 Hz, 70-120 Hz), obtaining six distinct 
signals. The upper limit of 120 Hz is constrained by the 
Nyquist–Shannon sampling theorem, considering that the 
sampling frequency at which the EEG signals was acquired is 
256 Hz. These frequency bands correspond to well-known 
human brain oscillations. Then, almost the whole spectrum of 
available frequencies has been covered 

C. Sliding Window and Training Builder Software 

In order to train a classifier able to recognize specific 
fundamental fractions of the signal within time series, the 
sliding window (SlW) technique can be applied, which is a 
strategy widely used in Machine Learning and Stream Data 
Mining [29], [30]. 

SlW is a method to rearrange a time series dataset as a 
supervised learning problem. A class of algorithms for stream 
processing focuses on the recent past of time series by 
applying a SlW on the data. In this way, only the last values of 
each streaming time series are considered for the analysis. 
Given a continuous time series stream, the SlW technique (or 
paradigm) examines the most recent data points and moves S 
steps along the time axis as new measurements arrive, where s 
is the step size. In other words, every S points (or seconds) the 
analysis focuses on the last L points (or seconds) of the time 
series. S and L are the temporal shift and the length of the 
window, respectively. The SlW moves on the time axis 
identifying a group of k ordered data. If f is the data sampling 
rate, and L is the length of the window in seconds, k=f*L is 
the number of the points in the window. While it is not easy to 
fix the length L of the SlW (or its k points), the value of L is 
related to both the historical series and the analysis technique 
to be used.  

Each window may have elements in common with the 
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previous window, but if there are no elements in common 
between the two windows (S>L) the SlW is called “tumbling 
window”. 

In most applications, each window is passed to a data 
processing unit, which per-forms some kind of time series 
classification, clustering, or anomaly detection. 

 
TABLE I 

WEB FORM FIELDS DESCRIPTION 
Field Name Meaning Value 

L Parameter The length of the signal to be 
analyzed, expressed in seconds 

[0, 3600] 

S Parameter The slippage of the signal to be 
analyzed, expressed in seconds 

[0, 3600] 

Patient The patient number on which 
to perform the analysis 

[1, 21] 

Phase The phase of a recording to 
analyze 

PreIctal, Ictal 

Registration 
file 

The number of EEG recording 
to analyze 

Number of recording (it 
depends on Patient) 

Fokus The electrodes to analyze [IN, OUT] 

Bandwidth The frequency bandwidth to 
analyze (in Hertz) 

B08= [8,12], B13=[13,20], 
B21=[21,30], B30=[30,45], 
B40=[40,70], B70=[70,120] 

Univariate 
feature 

The features of univariate type 
to be computed 

See Table III 

Bivariate 
feature 

The features of bivariate type 
to be computed 

See Table III 

Bivariate 
calculation 

method 

It indicates with respect to 
which reference signal to 

calculate the bivariate features 

Wrt previous L, 
wrt zero, 

wrt outfokus electrodes 

 
The Training Builder (TrB) [31] is a software application 

for the massive extraction of features from time series, by 
which the temporal analysis parameters can be chosen. The 
TrB creates the training sets that will be the input to Modeling 
next step, implementing the aforementioned SlW technique. In 
addition, because of time series are generally high-frequency 
data and a direct dealing with such data is very time and 
memory consuming, it is highly desirable to develop 
representation techniques that can reduce the number of points 
of time series. 

Many techniques have been proposed for representing time 
series with reduced data points, among these, Piecewise 
Aggregate Approximation (PAA) [32], Symbolic Aggregate 
approXimation (SAX) [33], Piecewise Linear Approximation 
(PLA) [34], etc. These time series representation algorithms 
have been implemented in TrB, as shown in the data 
preparation step of Fig. 1. So, output training set varies 
depending on: 
 Time series (or better the recording of them). 
 Temporal analysis parameters: L and S. 
 Time Series Representation algorithm. 
 Features to be computed. 

The application was designed following the client/server 
architectural model, in which the server part is composed by 
the algorithms for features and representation computation and 
other support utilities, while the client part is composed by a 
responsive browser-based application, responsible for 
visualizing output results and submitting a form for temporal 
parameters selection. By using the responsive web-oriented 
graphical user interface of the TrB software application, all the 

temporal analysis parameters, input sources, representation 
algorithms, and features can be selected by the user. 
Moreover, the user can select a subset of data points from a 
time series, specifying the time interval through a separate 
graphical window. 

The output consists in a comma-separated values (csv) file 
format, where features are stored as column vectors. The 
output format can also be customized by using a set of 
options: e.g. the number of decimal digits, to include/exclude 
data source description, computation statistics, etc. Thanks to 
the implemented web application, we can easily fix all input 
parameters (e.g. temporal parameters, patient number, 
univariate/bivariate features, etc.) for the TrB.  

Table I shows the description of the option fields. 
For the training of the classifier, the temporal parameters of 

the TrB are fixed and are reported in Table II. 
 

TABLE II 
TEMPORAL PARAMETERS OF THE TRAINING BUILDER 

L S 

The length of the signal to be 
analyzed, in seconds 

The slippage of the signal to be 
analyzed, in seconds 

5 s 1 s 

D. Features Calculation and Selection 

Following the SlW paradigm, every s seconds the previous 
L seconds of signal are analyzed and 26 features are calculated 
starting from L. Every second the analysis focuses on the last 
five seconds of the time series. 

 
TABLE III 

COMPUTED FEATURES 

Id Feature Name Code U/B Selected Count 

1 Standard Deviation SM1 U X 4 

2 Variance SM2 U   

3 Skewness SM3 U   

4 Kurtosis SM4 U X 10 

5 Mean SM5 U   

6 Hjorth Mobility HP1 U   

7 Hjorth Complexity HP2 U   

8 Shannon Entropy EB1 U X 16 

9 Log-Energy Entropy EB2 U X 14 

10 Kolmogorov Complexity CB1 U X 9 

11 Upper Limit Lempel-Ziv Complexity CB2 U   

12 Lower Limit Lempel-Ziv Complexity CB3 U   

13 Peak Displacement SE1 U   

14 Predominant Period SE2 U   

15 Averaged Period SE3 U   

16 Squared Grade SE4 U X 1 

17 Squared Time to Peak SE5 U   

18 Inverted Time to Peak SE6 U X 2 

19 Conditional Entropy MC1 B X 16 

20 Joint Entropy MC2 B X 22 

21 Mutual Information MC3 B X 30 

22 Cross Correlation Index MC4 B   

23 Euclidean Distance DB1 B X 6 

24 Dynamic Time Warping DB2 B X 13 

25 Longest Common Sub-Sequence DB3 B X 31 

26 Levenshtein Distance DB4 B X 28 
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Currently, the features have been divided into seven classes 
and can be Univariate (U) or Bivariate (B): 1) SM: Statistical 
Moments; 2) HP: Hjorth Parameters; 3) EB: Entropy Based; 4) 
CB: Complexity Based; 5) SE: Seismic Evaluators; 6) MC: 
Mutual Conditioned; 7) DB: Distance Based. 

The seismic features have been calculated by considering 
[35], where the authors prove an analogy between earthquakes 
and epileptic seizures, and by considering [36] for their 
calculations. The calculation of these seismic variables has 
been adapted for the neurological field for the first time in this 
work. 

Bivariate algorithms are used to compute similarity distance 
between the current running signal and a “reference” signal. 
This reference signal can be of three different types: 1) 
Previous L: the same signal taken at a previous L interval (s 
seconds backwards); 2) Zero: the constant signal equal to 0; 3) 
Different Synchronous Signal: the synchronous signal 
happening in the same instant but originated from different 
electrodes. 

Table III shows the list of all implemented features. The 
final dataset has 2377 features (2376 features calculated by the 
Training builder tool + 1 target class), because 
2376  a  b ∗  c  b ∗  d  ∗  e ∗  f, where: 
 a = 18 (univariate features). 
 b = 8 (bivariate features). 
 c = 3 (bivariate modality calculation). 
 d = 3 (type of reference signal). 
 e = 6 (number of the bandwidths). 
 f = 6 (electrodes: 3 InFokus + 3 OutFokus). 

We selected only the patient number 3 from the database 
because, thanks to a preliminary statistical analysis, it had a 
high number of seizures during its temporal monitoring and 
the seizures lasted longer than those of other patients. In 
particular, the patient had six epileptic seizures with an 
average duration of 92 s. The final dataset has 31270 cases, 
and each case refers to 5 seconds of signal. 

The target class is instantiated with the value “NO” if the 
recording under investigation does not contain a seizure, with 
the value “YES” if it contains a seizure. Its distribution is 
[NO,YES]=[30665 (98%), 605 (2%)] and it is unbalanced, 
because the number of samples belonging to ictal recordings 
represent a small percentage of the final dataset. This 
condition is called the class imbalance problem. The number 
of input features has been reduced by applying a feature 
selection algorithm, based on the Information Gain (IG) 
formula [22]. We get that IG ϵ [0, 0.313]. We choice to 
remove all attributes that have a score of less than 0.2. Thus, 
the number of features decreases from 2376 to 202. Table III 
also shows the selected features. We can see how the bivariate 
features are very high in the ranking and much counted. 

IV. MODELING, VALIDATION, AND TESTING 

A. Hold-Out Method 

In order to train a detection classifier, the hold-out method 
[22] is applied, in which the dataset with labeled examples is 
partitioned into two disjoint sets, called training and test sets, 

respectively. A model is induced from the training set and its 
performances are evaluated on the test set. The algorithms 
parameters are fixed by applying the cross-validation method 
[22] with 10 folds. For the sake of clarity, the training and the 
test sets are formed by instances coming from different files of 
neurological recordings. In order to overcome the class 
imbalance problem, the subset of the records labeled with 
“NO” of the training set has been random undersampled, in 
order to be equal in number to the ones labeled with “YES”. In 
particular, the training set has 508 records with target class 
label “NO” and 508 records with target class label “YES”. 

B. Training Neural Nets by Applying MLP Algorithm 

In the modeling phase, models for epileptic detection are 
trained by using Artificial Neural Network (ANN) algorithms 
and finally they are tested. The name of the algorithm in Weka 
tool [23], [24] chosen for training Artificial Neural Networks 
is MultilayerPerceptron. ANN is the algorithmic technique 
chosen to realize the model for seizure detection. It is a widely 
used machine learning technique for supervised learning 
models. It is used for classification and regression analysis. An 
ANN training algorithm builds a model that assigns new 
examples into a class or another. ANN tries to simulate 
biological neuronal systems. In order to do this, an ANN 
consists of an interconnected assembly of nodes and directed 
links. One of the most used and studied model of artificial 
neural networks is the multilayer perceptron (MLP). MLP is 
widely used for both binary classification and regression. An 
MLP has three layers of nodes: an input layer, a hidden layer 
and an output layer, but its topology can be enriched with 
other intermediate layers. Except for the input nodes that are 
the features, each node is a neuron that uses an activation 
function [22]. The most widespread activation function is the 
well-known sigmoid function that is a nonlinear function and 
it is also incorporated in the MLP algorithm of Weka. MLP 
utilizes the backpropagation that is a supervised learning 
technique for the ANN training phase. By analyzing the 
fraction of the EEG signal immediately preceding the 
beginning of the epileptic seizure and the seizure itself, a 
classifier is trained on the selected features, in order to detect 
the signals with seizure by using the sliding window 
technique. The classifier based on MLP can be used to tag the 
time series of EEG signals. By using the training data, the 
MLP algorithm of Weka tool (v.3.8.3) is used to separate the 
two classes of signals, the EEG signal with seizure and EEG 
signal without seizure. The trained networks can be built by 
hand, created by an algorithm, or both. The networks can also 
be monitored and modified during training time. The nodes 
are all sigmoid (except for when the class is numeric, in which 
case the output nodes become unthresholded linear units). 

In order to select the best classifier and to compare the 
results of the algorithms, many indicators and measures were 
calculated including Accuracy, Area Under the roc Curve 
(AUC), True Positive rate (TPr), False Positive rate (FPr) [22]. 

By changing the “hiddenLayers” and “trainingTime” 
parameters in Weka, many MLPs have been trained. 
HiddenLayers (H) defines the hidden layers of the neural 
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network, whilst trainingTime (T) defines the number of 
epochs to train through. 

 
TABLE IV 

SVMS DETAILED ACCURACY BY CLASS 

N. 
Confusion 

matrix 
Accuracy TPr FPr Precision AUC Class

F1 
480 28 

94.98 
0.945 0.045 0.954 0.987 N 

23 485 0.955 0.055 0.945 0.987 Y 

F2 
461 47 

90.65 
0.907 0.094 0.906 0.933 N 

48 460 0.906 0.093 0.907 0.933 Y 

F3 
499 9 

98.72 
0.982 0.008 0.992 0.997 N 

4 504 0.992 0.018 0.982 0.997 Y 

 
Table IV shows the performances of three MLP-based 

classifiers, trained by using the cross-validation method and 
the balanced training set and varying the parameters. 

The F1 model was obtained by fixing H = t = attribs + 
classes = 202 + 2 = 204 and T = 500 epochs. The F2 model 
was obtained by fixing H = a = (attribs classes) / 2 = (202 + 2) 
/ 2 = 102 and T=700 epochs. The F3 model was obtained by 
fixing H = 50 and T = 550 epochs. 

For the testing phase, we chose the F3 model, which 
showed the best performances, because it has the highest 
TPrate, the lowest FPrate, and the highest Accuracy. 

C. Model Testing and Errors Analysis Evaluation 

Table V shows the F3 detection model performances on the 
test set formed by recordings 135, belonging to the preictal 
phase and thus not containing a seizure, and 136, belonging to 
ictal phase and thus containing a seizure. These two sets are 
not included in the training set, obviously. 

 
TABLE V 

MLP DETAILED ACCURACY BY CLASS ON TEST SET 

Confusion 
matrix 

Accuracy TPr FPr Precision AUC Class

4425 22 
99.995 

0.995 0 1 0.948 N 

0 97 1 0.005 0.815 0.948 Y 

 
The low number of false positives (22) and the very high 

accuracy (99.995) of the model demonstrate the high capacity 
of the binary classifier to discriminate between the elements 
coming from the preictal recordings and those coming from 
the ictal ones. ANNs, and therefore MLP, also have some 
general disadvantages. It is not always possible to have a 
simple analytical expression of the model, the process could 
be computationally time consuming, and the classifier is not 
easily explained by rules. 

The two test files and the training set are disjoint sets, 
although the test sets belong to the same patient 3. This 
guarantees us a statistical reliability of the model; for the sake 
of clarity, thinking of using the same neural network to detect 
epileptic seizures for all patients is a thing that is hoped or 
wished for but in fact is illusory or impossible to achieve, 
because patients have different neurological damage, in 
different locations. Obtaining a personalized model for each 
patient, although expensive from the point of view of data 
mining, is certainly a way to reduce false alarms and 
classification errors. We underline, however, that the work 
described here is only a first research result and that we intend 
to deepen the analysis of data of other patients and train other 
detection models soon. 

 

 

Fig. 3 Trend of the E1-B40-EB1 (Shannon Entropy) variable and classification errors
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Fig. 3 shows the trend of the E1-B40-EB1 feature of the test 
set; “E1-B40-EB1” is a compact name which indicates that the 
variable refers to Shannon Entropy (EB1), of the signal 
recorded by the electrode number 1 (E1), computed in the 
frequency band 40-70 Hz (B40). The orange points indicate 
the “YES” records (that come from the ictal signal), while the 
blue points indicate the “NO” records (that come from the 
preictal signal). The blue boxes represent 22 false positives 
(false alarms), and they are very close and immediately before 
the true positives (hit rates).  

Even before the real onset of the seizure, it seems that the 
model based on the MLP algorithm can detect changes in the 
electrical activity of the brain of patient number 3 a few 
seconds earlier, as if he were already in seizure phase. For this 
reason, these pre-ictal seconds belong to asymptomatic 
positive observations. 

The F3 MLP classifier seems to have a predictive property 
that could be explored in future works. 

V. CONCLUSION AND FUTURE WORKS 

In this paper, an automated tool for seizure detection in 
EEG signals has been proposed in order to classify and detect 
epileptic seizures and seizure-free signals. The trained ANN-
based model is able to classify with high accuracy the 
instances of the test file consisting of records from both 
seizure-free and epileptic EEG signals. The high performances 
achieved by the classifier are due to the ability of the extracted 
features to describe EEG signals, to the feature selection 
process, and certainly to the specificity of the model for the 
selected patient. The further step will be to test the model on 
the entire dataset in order to demonstrate the independence of 
the model from the specific patient and its feasibility for 
different patients and different epilepsy types. The goal will be 
to develop a unique model able to identify the onset of the 
seizures for all the patients and for all the different kinds of 
epilepsy. In fact, robustness of the model and its independence 
from the data will give it a high translational value, not only 
because it will be a valuable tool for epileptologists to speed 
up the process of seizure detection and improve epilepsy 
diagnosis, but, more important, because this method can be 
embedded in systems to develop closed-loop intervention 
therapies. For these kinds of applications, it is crucial that the 
whole algorithm has a low computational cost, in order to be 
feasible for real-time settings. Further improvements will be 
done to decrease this cost refining the performance of the 
classifier during the feature extraction and selection process, 
in order to be reusable for different patients and epilepsy 
types. Future studies should focus on testing online these 
algorithms on continuous unlabeled data. We plan to extend 
our framework by implementing other algorithms for the 
feature extraction and to move towards one of the new 
emerging massive data processing frameworks, e.g. Apache 
Spark [37]. 
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