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 
Abstract—Over the past several years, researchers have shown a 

great interest in assessing the mobility of elderly people to measure 
their functional status. Usually, such an assessment is done by 
conducting tests that require the subject to walk a certain distance, turn 
around, and finally sit back down. Consequently, this study aims to 
provide an at home monitoring system to assess the patient’s status 
continuously. Thus, we proposed a technique to automatically detect 
when a subject sits down while walking at home. In this study, we 
utilized a Doppler radar system to capture the motion of the subjects. 
More than 20 features were extracted from the radar signals out of 
which 11 were chosen based on their Intraclass Correlation Coefficient 
(ICC > 0.75). Accordingly, the sequential floating forward selection 
wrapper was applied to further narrow down the final feature vector. 
Finally, five features were introduced to the Linear Discriminant 
Analysis classifier and an accuracy of 93.75% was achieved as well as 
a precision and recall of 95% and 90% respectively. 
 

Keywords—Doppler radar system, stand-to-sit phase, TUG test, 
machine learning, classification.  

I. INTRODUCTION 
VER the past few decades, researchers have shown a great 
interest in human gait analysis and its various applications. 

When it comes to gerontology, physicians are interested in 
studying the motion of elderly subjects to detect any signs of 
mobility impairment or decline [1]. Therefore, several clinical 
tests were designed and implemented to assess subjects’ 
mobility and frailty based on the gait analysis.  

During clinical evaluations, subjects are prompted to 
complete a series of tasks based on the requirements of each 
test. To illustrate, the Timed Up and Go (TUG) test is one of 
the most common clinical assessments where subjects are asked 
to stand up from the chairs they were sitting on, walk forward 
for a distance of 3 meters, turn around, and sit back down in 
their seats [2]. During the TUG test, two transfer phases are 
performed: Sit-to-Stand phase and the Stand-to-Sit phase. The 
Stand-to-Sit phase can be further divided into two sub-phases: 
the turning to sit phase and the sitting down phase. An example 
on how a radar signal during the TUG test can be segmented is 
seen in Fig. 1, where:  
• T1 corresponds to the Standing phase 
• T2 corresponds to the Turning to Sit phase 
• T3 corresponds to the Stabilization phase (the phase where 
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the subject stabilizes him/herself after turning around and 
just before sitting down). It is worthy to note that this phase 
may be crucial in determining and studying the stability 
and frailty of elderly people.    

• T4 corresponds to the Sitting down phase  
Meanwhile, the Dynamic Gait Index (DGI) test assesses 

subjects’ functional stability while performing eight tasks that 
range from walking and turning to crossing over and around 
obstacles [1].  

Most of these clinical tests take place in specialized clinics 
under the supervision of trained physicians. Nevertheless, in 
order to improve the evaluation of the functional status of 
seniors, continuous monitoring of their gait is needed. In fact, 
when clinicians are provided with constant updates and 
information on their patients, they can tell if subjects are at 
higher risk of adverse outcomes such as falling, physical 
disability, cognitive impairment, etc.  

Based on all of the above, various technological systems 
were built and implemented to provide elderly with constant 
walking supervision in the comfort of their own homes. Such 
systems mostly require installing cameras inside the subject’s 
home or wearing different sensors [3]. Although these systems 
have their own advantages, many problems arise from their use. 
To exemplify, camera-based systems may invade and violate a 
person’s privacy. Additionally, an elder might forget to wear 
the necessary sensors that the monitoring system depends on to 
extract useful parameters and information [1]. Thus, many 
researchers are nowadays working on designing new techniques 
that are much more accurate while keeping in mind the 
practicality of the system and the patients’ privacy.  

Therefore, this paper proposes a novel technique for an at 
home monitoring system that automatically detects the two sub-
phases (turning to sit phase and the sitting down phase) in the 
Stand-to-Sit phase during the motion of the subject. A Doppler 
radar was utilized in this study as it is not affected by 
surrounding light, does not require the user to wear any special 
equipment, is effective while remaining cost friendly, and 
finally provides the user with the needed privacy [1].  
The remainder of this paper is organized as follows: Section II 
tackles the experimental protocol and the followed 
methodology. Then, Section III discusses the results followed 
by the conclusion and future perspectives in section IV. 
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Fig. 1 Segmented Radar Signal during the TUG Test 

 
II. METHODOLOGY 

A. Experimental Protocol 
Ten healthy participants, five females and five males, age 

ranging between 22 and 27 years, volunteered to participate in 
the conducted study. They were given a detailed description on 
the experimental protocol as well as the motivation of the study 
at hand. Since the aim of this study is to detect the Stand-to-Sit 
phase in elderly people, the participants were asked to watch a 
one-minute video of an older adult performing the TUG test and 
mimic them several times as practice trials. After making sure 
that the subjects were familiar with the TUG test and what they 
are expected to do, each subject was asked to perform the TUG 
test in a slow manner four consecutive times. The entire 
experiments were performed in the UTT well-equipped 
laboratory as shown in Fig. 2. 

In order to obtain the ground truth reference data for every 
trial, a 3D motion tracking system, known as the Vicon system, 
was utilized. The Vicon system is an optoelectronic system that 
depends on infrared cameras and reflective markers placed in the 
subject’s body. The Vicon cameras emit infrared light and 
receive the reflected waves from the markers. Based on the set 
origin and the reflected wave, the position of the subject can be 
computed in the x, y, and z directions. In this study, eight Vicon 
cameras were used along with four reflective markers placed on 
the left and right shoulder as well as the left and right toe. The 
system was calibrated before the beginning of the experiment. 
 

 

Fig. 2 Experimental Setup 
 

In this study, an X-band Doppler Motion Detector of 
frequency 10.587 GHz was utilized [4]. After performing a set 
of experimental trials, it was decided that the radar would be 
placed on the edge of the seat, tilted outward at a 20-degree 

angle, and positioned at a 70-degree angle with respect to the x-
axis. This system is used to locate and calculate different gait 
parameters based on the principle of transmitted and reflected 
electromagnetic waves. To illustrate, the radar emits an 
electromagnetic wave and receives a reflected signal after it 
bounces off a moving target. Based on the Doppler effect, the 
speed of the target can be calculated as seen in (1)   

ݒ  = 	 ∆௙ൈ௖ଶ௙೐                                           (1) 
 

where ݒ is the target speed, ܿ is the speed of light in vacuum 
(3 ൈ  ሻ, ∆݂ is the difference between the transmittedݏ/݉	10଼
and the received frequency, and ݂ ௘ is the frequency of the signal 
emitted by the radar [5].  

The radar output was connected to an electronic circuit to 
filter out noise and amplify its amplitude. Initially, based on the 
location of the radar and how close it would be near the subject 
while sitting, a gain of 45 was used. As for the filters, the radar 
output was introduced to a band pass filter with cut-off 
frequencies of 2 Hz and 1200 Hz. In fact, the cut-off frequencies 
were set approximately based on the minimum ሺݒ௠௜௡ ௠௔௫ݒand maximum walking speed ሺ	ሻݏ/݉	0.075= =  of an individual [1]. However, in order to compensate for the	ሻݏ/݉	1.5
speed of the limbs, which can reach up to 500 Hz, and to leave 
a certain margin of error, the cut-off frequencies were set to 2 
Hz and 1200 Hz.  

B. Pre-Processing  
In this study, the processing of the radar signal was done 

using two different techniques. 
Firstly, it was proposed to convert the radar signals into a 

Waveform Audio File to extract spectral features found strictly 
in audio signals. In fact, based on the Doppler effect, the 
Doppler Frequency shift ∆f seen in the backscattered radar 
signal of a moving person is equal to 2v/λ, where v is the 
velocity of the subject and λ is the wavelength of the emitted 
radar signal. The Doppler frequency shift (∆fୈ) due to the 
motion of the human torso is between 190 and 30 Hz, which 
lies in the frequency band of audio signals. Although swinging 
human limbs cause a larger shift in the Doppler Frequency, the 
frequencies are still within the audio frequency band. Thus, 
Doppler signal received after backscattering from the motion of 
a subject can be related to audio signals [6]. Furthermore, as 
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seen in Fig. 3, the radar and audio signal share common 
characteristics and parameters which allows us to apply speech 
processing on radar signals. In our study, the recorded radar 
signals were converted to a “.wav” file in order to extract the 
necessary features.  

In order to visualize the acquired signals in the time-
frequency domain, the Continuous Wavelet Transform (CWT) 
was applied to the Doppler signals using the “bump” wavelet 
[1]. Since this study aims to detect the transfer phase of a 
moving subject, the maximum energy point was extracted from 
the CWT matrix at each instant. Hereafter, the Doppler 
Equation was applied to the obtained signal to calculate the 
speed of the subject. 
 

 
Fig. 3 Comparison between Audio Signal (on top) and Radar Signal 

(bottom) 

C. Feature Extraction  
More than 20 time domain, frequency domain and time-

frequency domain features were extracted from our radar 
signals as follows: 
1. Time Domain Features: Mean [7], Variance [7], Kurtosis 

[8], Skewness [8], Sequence Period [9], Root Mean Square 
(RMS) [10], Autocorrelation [11], and Partial 
Autocorrelation [11], and Zero Crossing Rate [12].  

2. Frequency Domain Features: Median and Mean frequency 
[13], Spectral Bandwidth [14], [20], Spectral Roll-off [15], 
[20], Spectral Flatness [18], p20], Spectral Entropy [18], 
and Spectral Contrast [19].  

3. Time-Frequency Domain Features: Speed and 
Acceleration were computed after applying the CWT to the 
radar signal, extracting the maximum energy points, and 
then applying Doppler Equation. Chroma Short Time 
Fourier Transform (STFT) [16], Chroma Constant-Q 
transform (CQT) [16], Spectral Centroid [14], Mel 
Spectrogram [17], and Mel Frequency Cepstral Coefficient 
(MFCC) [18].  

D. Feature Selection  
Feature selection is selecting a subset of features that include 

only the relevant and essential features. In this stage, the low-
reliable features are removed so that the performance of the 
classifier is enhanced and computation time is reduced [21].  

Firstly, it was of utmost importance to select the reliable and 
consistent features; hence, we propose a feature selection 
technique based on the ICC outcomes. In fact, the ICC 
measures how repeatable and reliable a feature is [22], [23]. In 
this research, the ICC was computed using the 2-way random 
effect model, a k-measurement type, and an absolute agreement 
estimation. The preceding model was chosen since the sample 
of raters is randomized and it is essential for the outputs to have 
an agreement between them [24]. Regarding the selected type, 
the intended measurement protocol is planned to be done in 
actual applications through a series of measurements. Thus, the 
ICC can be calculated as in (2). 

ܥܥܫ  = 	 ெௌೃିெௌಶெௌೃା	ಾೄ಴షಾೄಶ೙                                  (2) 

 
where, ܵܯோ is the mean square of the rows, ܵܯா is the mean 
square error,  ܵܯ஼ is the mean square of the columns, and ݊ is 
the number of subjects.  

After the initial screening of the features using the ICC, a 
wrapper was applied to further narrow down the final feature 
vector. To illustrate, wrapper methods select the subset of 
features based on the learning algorithm’s performance [25]. In 
this work, we applied the Sequential floating forward selection 
(SFFS) wrapper to the chosen features using nine different 
classifiers. The SFFS goes through three basic phases [25]: 
1. Inclusion: the SFFS starts with an empty set of features (X 

= 0) then, it takes a step forward by inserting the most 
significant feature concerning X.  

2. Conditional exclusion: the SFFS finds the least significant 
feature k in X. If that feature has been just added, then it is 
kept and the algorithm goes back to step 1. Else, feature k 
is excluded and the algorithm proceeds to step 3.  

3. Continuation of conditional exclusion: the least 
significant feature is found again in X. If its removal will 
leave at least two features in X and will cause a larger value 
for the feature selection criterion function J(X), then the 
SFFS removes that feature and repeats the same steps. 
Whenever these two conditions cease to exist, the SFFS 
returns to step 1 until a predetermined number of features 
is reached.  

In our research, the SFFS was applied to nine classifiers that 
are commonly used when classifying radar and electromagnetic 
signals [26]. The list of used classifiers can be seen below. An 
example of how the SFFS works when applied to one of these 
classifiers can be seen in Fig. 4. 
1. Decision Tree (DT) 
2. Random Forest (RF) 
3. Linear Discriminant Analysis (LDA) 
4. Quadratic Discriminant Analysis (QDA) 
5. Logistic Regression (LR) 
6. Support Vector Machine with a linear kernel (SVM) 
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7. K-nearest neighbors (KNN) 
8. Naïve Bayes (NB) 
9. Multi-layer Perceptron (MLP) 

 

 
Fig. 4 SFFS applied on the Decision Tree Classifier 

E. Training and Testing the Models 
After applying the SFFS, the feature vector that yielded the 

highest accuracy was considered for each classifier. Hereafter, 
the model was trained and tested on its corresponding subset of 
features using 10-fold cross-validation.  

III. RESULTS AND DISCUSSION  
The TUG test performed by the participants can be sectioned 

into three transfer phases, as mentioned earlier; thus, as seen in 
Table I, the ICC was computed for all the features in the three 
phases of a TUG test: Standing, Turning to sit, and Sitting down. 
The bold values found in the table refer to reliable features since 
ICC values between 0.5 and 0.75, 0.75 and 0.9, and 0.9 and 1, 
respectively, indicate moderate, good, and excellent reliability 
[24].  

TABLE I 
ICC VALUES OF RELIABLE FEATURES DURING DIFFERENT PHASES 

Features Standing Turning to Sit Sitting Down 
Zero Crossing Rate 0.85 0.40 0.89 
Root Mean Squared 0.90 0.87 0.80 

MFCC 0.90 0.73 0.82 
Spectral Contrast 0.78 0.85 0.87 
Spectral Flatness 0.34 0.85 0.84 
Mel Spectrogram 0.88 0.83 0.68 
Spectral Roll-off 0.82 0.69 0.90 

Spectral Bandwidth 0.78 0.86 0.89 
Spectral Centroid 0.78 0.76 0.91 

Kurtosis 0.75 0.63 0.62 
Mean 0.83 0.84 0.62 

Variance 0.78 0.88 0.65 
Median Frequency 0.78 0.78 0.95 

Peak2RMS 0.79 0.73 0.83 
RMS 0.85 0.48 0.72 

Skewness 0.84 0.72 0.96 
Sequence Period 0.89 0.82 0.96 
Spectral Entropy 0.82 0.79 0.86 

Partial Correlation 0.80 0.76 0.88 
Auto Correlation 0.80 0.78 0.87 

 

Since the main aim of this work is to detect the different 
phases, but namely, the turning to sit and the sitting phase, two 
different feature vectors were taken into consideration. To 
exemplify, the first feature vector consisted of features that 
were reliable in all three phases, while the second vector 
included parameters that were reliable in the turning to sit and 
sitting down phase. The two feature vectors were introduced to 
the SFFS wrapper based on all nine classifiers mentioned 
above. The results of the SFFS are shown in Tables II and III 
where the highest accuracies achieved by the classifier are 
mentioned as well as their corresponding number of features for 
the first and second feature vector, respectively. In fact, Table 
II shows how well the classifier performed when classifying the 
three phases while Table III depicts how well the models 
performed when separating only two instances.  

 
TABLE II 

SFFS RESULTS BASED ON DIFFERENT CLASSIFIERS (ALL PHASES) 

Classifier  Accuracy 
(%) 

Size of Feature 
Vector   

Decision Tree 75 5 
Random Forest 79.16 6 

Quad. Discriminant Analysis  70.83 2 
 

TABLE III 
SFFS RESULTS BASED ON DIFFERENT CLASSIFIERS (TURN AND SIT PHASE) 

Classifier  Accuracy 
(%) 

Size of Feature 
Vector   

Decision Tree 91.25 3 

Random Forest 93.75 11 

Linear Discriminant Analysis  93.75 5 

Quad. Discriminant Analysis  90 5 

 
After finding the classifiers that performed the best in terms 

of accuracy, each feature vector was taken and reintroduced 
into the studied model to train and test using 10-fold cross-
validation. The results of this step are shown in Tables IV and 
V.  

 
TABLE IV 

EVALUATION OF CLASSIFIERS (ALL PHASES) 
Classifier  Accuracy (%) Precision    Recall 

Decision Tree 56 57 57 
Random Forest 76.5 76 79 

Quad. Discriminant 
Analysis 70 69.96 69 

 
TABLE V 

EVALUATION OF CLASSIFIERS (TURNING AND SITTING DOWN PHASE) 

Classifier  Accuracy  
(%) 

Precision 
(%)   

Recall 
(%) 

Decision Tree 92.5 91.7 97.5 
Random Forest 89 92.6 95 

Linear Discriminant 
Analysis  93.75 95.5 90 

Quad. Discriminant 
Analysis  92.5 90.6 90 

 
As seen in the preceding tables, the classification models 

were able to perform well when classifying the turning to sit 
and sitting down phase in the TUG test. That is due to the fact 
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that the standing phase, which is very similar to the sitting down 
phase, is not taken into consideration. Therefore, since in 
previous works, the standing phase was detected using different 
techniques, we can neglect it and focus on the remaining two 
phases. Thus, it was evident that the LDA classifier had the best 
performance when it came to distinguishing the turning to sit 
and sitting down phase.  

IV. CONCLUSION AND FUTURE PERSPECTIVES 
To wrap things up, this work investigates the possibility of 

building a Machine Learning model that distinguishes the two 
sub-phases when a person sits down. This was done by 
extracting various features from the radar signal and filtering 
them out based on their reliability and their contribution to the 
learning process. Then, several classifiers were tested and the 
one with the best performance was selected.  

As for detecting the exact instants at which the subject begins 
to turn around to sit and when he/she starts to sit down, we aim 
to use regression to find a generalized equation for motion of a 
subject during the entire TUG test. Through modeling, we will 
be able to find an equation upon which we can detect the desired 
instances.  

ACKNOWLEDGMENT 
This work was supported by the GRAND-EST Region, the 

European Regional Development Fund (FEDER) and 
DOMITYS Group. 

REFERENCES 
[1] R. Soubra, A. Chkeir, F. Mourad-Chehade, D. Alshamaa, B. Dauriac and 

J. Duchene, "Doppler Radar System for an Automatic Transfer Phase 
Detection Using Wavelet Transform Analysis," in 3rd International 
Conference on Bio-engineering for Smart Technologies (BioSMART), 
Paris, France, 2019. 

[2] Podsiadlo, D. and S. Richardson, The timed “Up & Go”: a test of basic 
functional mobility for frail elderly persons. Journal of the American 
geriatrics Society, 1991. 39(2): p. 142-148. 

[3] Sprint, G., D.J. Cook, and D.L. Weeks, Toward automating clinical 
assessments: a survey of the timed up and go. IEEE reviews in biomedical 
engineering, 2015. 8: p. 64-77. 

[4] Microwave Solutions Ltd. Available from: https://www.microwave-
solutions.com/datasheets. 

[5] C. Neipp, A. Hernández, J. Rodes, A. Márquez, T. Beléndez and A. 
Beléndez, "An analysis of the classical Doppler effect," European Journal 
of Physics, vol. 24, 2003. 

[6] P. Molchanov, J. Astola, K. Egiazarian, Totsky and Alexander, 
"Classification of ground moving targets using bicepstrum-based features 
extracted from Micro-Doppler radar signatures," EURASIP Journal on 
Advances in Signal Processing, 2013. 

[7] S. Hozo, B. Djulbegovic and H. I, "Estimating the mean and variance from 
the median, range, and the size of a sample," BMC Medical Research 
Methodology, 2005. 

[8] S. Yusoff and Y. Wah, "Comparison of conventional measures of 
skewness and kurtosis for small sample size," in Statistics in Science, 
Business, and Engineering (ICSSBE), 2012. 

[9] Q. Yuan, J. Shang, X. Cao, C. Zhang, X. Geng and J. Han, "Detecting 
Multiple Periods and Periodic Patterns in Event Time Sequences," in 2017 
ACM on Conference on Information and Knowledge Management, 2017. 

[10] P. Petrovic, "Root-mean-square measurement of periodic, band-limited 
signals," in Instrumentation and Measurement Technology Conference 
(I2MTC),  IEEE International, 2012. 

[11] Z. Ke and Z. Zhang, "Testing autocorrelation and partial autocorrelation: 
Asymptotic methods versus resampling techniques," British Journal of 
Mathematical and Statistical Psychology, vol. 7, no. 1, pp. 96-116, 2017. 

[12] M. Akçay and K. Oguz, "Speech emotion recognition: Emotional models, 
databases, features, preprocessing methods, supporting modalities, and 
classifiers," Speech Comminucation, vol. 116, pp. 56-76, 2020. 

[13] T. Freeborn, "Fatigue monitoring techniques using wearable systems," in 
Wearable Sensors (Second Edition) Fundamentals, Implementation and 
Applications, Academic Press, 2021, pp. 575-592. 

[14] T. Giannakopoulos and A. Pikrakis, "Audio Features," in Introduction to 
Audio Analysis - A MATLAB Approach, Academic Press, 2014, pp. 59-
103. 

[15] G. Peeters, "A large set of audio features for sound description (similarity 
and classification) in the CUIDADO project," 2004. 

[16] A. Shah, M. Kattel, A. Nepal and Shrestha, "Chroma Feature Extraction," 
in Chroma Feature Extraction using Fourier Transform, 2019. 

[17] B. Zhang, J. Leitner & S. Thornton, "Audio Recognition using Mel 
Spectrograms and Convolution Neural Networks," 2019. 

[18] L. Muda, M. Begam and I. Elamvazuthi, "Voice Recognition Algorithms 
using Mel Frequency Cepstral Coefficient (MFCC) and Dynamic Time 
Warping (DTW) Techniques," JOURNAL OF COMPUTING, vol. 2, no. 
3, 2010. 

[19] D. Mitrović, M. Zeppelzaue and C. Breiteneder, "Features for Content-
Based Audio Retrieval," in Advances in Computers, ELSEVIER, 2010, 
pp. 71-150. 

[20] J. Yang, F.-L. Luo and A. Nehorai, "Spectral contrast enhancement: 
Algorithms and comparisons," Speech Communication, pp. 33-46, 2002. 

[21] E. Karabulut, S. Ozel and T. İbrikçi, "A comparative study on the effect 
of feature selection on classification accuracy," in First World Conference 
on Innovation and Computer Sciences (INSODE 2011), 2012. 

[22] McGraw, K.O. and S.P. Wong, Forming inferences about some intraclass 
correlation coefficients. Psychological methods, 1996. 1(1): p. 30. 

[23] Shrout, P.E. & J.L. Fleiss, Intraclass correlations: uses in assessing rater 
reliability. Psycho. bulletin, 1979. 86(2): p. 420. 

[24] T. Koo and M. Li, "A Guideline of Selecting and Reporting Intraclass 
Correlation Coefficients for Reliability Research," Journal of 
Chiropractic Medicine, 2016. 

[25] N. El Aboudi and L. Benhlima, "Review on wrapper feature selection 
approaches," in International Conference on Engineering & MIS 
(ICEMIS), 2016. 

[26] P. Lang, X. Fu, M. Martorella, J. Dong, R. Qin, X. Meng and M. Xie, "A 
Comprehensive Survey of Machine Learning Applied to Radar Signal 
Processing," 2020. 
 

 

Powered by TCPDF (www.tcpdf.org)

590International Scholarly and Scientific Research & Innovation 15(11) 2021 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 C
om

pu
te

r 
an

d 
In

fo
rm

at
io

n 
E

ng
in

ee
ri

ng
 V

ol
:1

5,
 N

o:
11

, 2
02

1 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
00

12
30

1.
pd

f

http://www.tcpdf.org

