Search results for: Steel bracing
159 Multi-Objective Optimization for Performance-based Seismic Retrofit using Connection Upgrade
Authors: Dong-Chul Lee, Byung-Kwan Oh, Se-Woon Choi, Hyo-Sun Park
Abstract:
The unanticipated brittle fracture of connection of the steel moment resisting frame (SMRF) occurred in 1994 the Northridge earthquake. Since then, the researches for the vulnerability of connection of the existing SMRF and for rehabilitation of those buildings were conducted. This paper suggests performance-based optimal seismic retrofit technique using connection upgrade. For optimal design, a multi-objective genetic algorithm(NSGA-II) is used. One of the two objective functions is to minimize initial cost and another objective function is to minimize lifetime seismic damages cost. The optimal algorithm proposed in this paper is performed satisfying specified performance objective based on FEMA 356. The nonlinear static analysis is performed for structural seismic performance evaluation. A numerical example of SAC benchmark SMRF is provided using the performance-based optimal seismic retrofit technique proposed in this paperKeywords: connection upgrade, performace-based seismicdesign, seismic retrofit, multi-objective optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2037158 Applications of Carbon Fibers Produced from Polyacrylonitrile Fibers
Authors: R. Eslami Farsani, R. Fazaeli
Abstract:
Carbon fibers have specific characteristics in comparison with industrial and structural materials used in different applications. Special properties of carbon fibers make them attractive for reinforcing and fabrication of composites. These fibers have been utilized for composites of metals, ceramics and plastics. However, it-s mainly used in different forms to reinforce lightweight polymer materials such as epoxy resin, polyesters or polyamides. The composites of carbon fiber are stronger than steel, stiffer than titanium, and lighter than aluminum and nowadays they are used in a variety of applications. This study explains applications of carbon fibers in different fields such as space, aviation, transportation, medical, construction, energy, sporting goods, electronics, and the other commercial/industrial applications. The last findings of composites with polymer, metal and ceramic matrices containing carbon fibers and their applications in the world investigated. Researches show that carbon fibers-reinforced composites due to unique properties (including high specific strength and specific modulus, low thermal expansion coefficient, high fatigue strength, and high thermal stability) can be replaced with common industrial and structural materials.Keywords: Polyacrylonitrile Fibers, Carbon Fibers, Application
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4847157 Effect of Helium-Argon Mixtures on the Heat Transfer and Fluid Flow in Gas Tungsten Arc Welding
Authors: A. Traidia, F. Roger, A. Chidley, J. Schroeder, T. Marlaud
Abstract:
A transient finite element model has been developed to study the heat transfer and fluid flow during spot Gas Tungsten Arc Welding (GTAW) on stainless steel. Temperature field, fluid velocity and electromagnetic fields are computed inside the cathode, arc-plasma and anode using a unified MHD formulation. The developed model is then used to study the influence of different helium-argon gas mixtures on both the energy transferred to the workpiece and the time evolution of the weld pool dimensions. It is found that the addition of helium to argon increases the heat flux density on the weld axis by a factor that can reach 6.5. This induces an increase in the weld pool depth by a factor of 3. It is also found that the addition of only 10% of argon to helium decreases considerably the weld pool depth, which is due to the electrical conductivity of the mixture that increases significantly when argon is added to helium.Keywords: GTAW, Thermal plasmas, Fluid flow, Marangoni effect, Shielding Gases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3220156 Impact Porous Dielectric Silica Gel for Operating Voltage and Power Discharge Reactor
Authors: E. Gnapowski, S. Gnapowski
Abstract:
This study examined the effect of porous dielectric silica gel the discharge ignition voltage and input power in a plasma reactor. For the experiment was used a plasma reactor with two mesh electrodes made of stainless steel with a mesh size of 0.1x0.1mm. The study analyzed and compared with parameters such as power, ignition and operation voltage of the reactor for two dielectrics a porous and glass. During experiment were observed several new phenomena conducted for porous dielectric. The first phenomenon was the reduction the ignition voltage discharge to volume around few hundred volts. Second it was increase input power six times more compared with power those obtained for the glass dielectric. Thirdly difference it is ΔV between ignition voltage Vi and operating voltage reactor Vm for porous dielectric it was 11%, while ΔV for the glass dielectric it was 60%. Also change the discharge characteristics from DBD for glass dielectric to the streamer resistance discharge for the porous dielectric.
Keywords: Input power, mesh electrodes, onset voltage, porous dielectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943155 An Experimental Study on Development of the Connection System of Concrete Barriers Applicable to Modular Bridge
Authors: Seung-Kyung Kye, Sang-Seung Lee, Dooyong Cho, Sun-Kyu Park
Abstract:
Although many studies on the assembly technology of the bridge construction have dealt mostly with on the pier, girder or the deck of the bridge, studies on the prefabricated barrier have rarely been performed. For understanding structural characteristics and application of the concrete barrier in the modular bridge, which is an assembly of structure members, static loading test was performed. Structural performances as a road barrier of the three methods, conventional cast-in-place(ST), vertical bolt connection(BVC) and horizontal bolt connection(BHC) were evaluated and compared through the analyses of load-displacement curves, strain curves of the steel, concrete strain curves and the visual appearances of crack patterns. The vertical bolt connection(BVC) method demonstrated comparable performance as an alternative to conventional cast-in-place(ST) while providing all the advantages of prefabricated technology. Necessities for the future improvement in nuts enforcement as well as legal standard and regulation are also addressed.Keywords: Modular Bridge, Concrete Barrier, Bolt Connection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1715154 Surface Roughness Evaluation for EDM of En31 with Cu-Cr-Ni Powder Metallurgy Tool
Authors: Amoljit S. Gill, Sanjeev Kumar
Abstract:
In this study, Electrical Discharge Machining (EDM) is used to modify the surface of high carbon steel En31 with the help of tool electrode (Copper-Chromium-Nickel) manufactured by powder metallurgy (PM) process. The effect of EDM on surface roughness during surface alloying is studied. Taguchi’s Design of experiment (DOE) and L18 orthogonal array is used to find the best level of input parameters in order to achieve high surface finish. Six input parameters are considered and their percentage contribution towards surface roughness is investigated by analysis of variances (ANOVA). Experimental results show that an hard alloyed surface (1.21% carbon, 2.14% chromium and 1.38% nickel) with surface roughness of 3.19µm can be generated using EDM with PM tool. Additionally, techniques like Scanning Electron Microscope (SEM) and Energy Dispersive Spectroscopy (EDS) are used to analyze the machined surface and EDMed layer composition, respectively. The increase in machined surface micro-hardness (101%) may be related to the formation of carbides containing chromium.
Keywords: Electrical Discharge Machining, Surface Roughness, Powder metallurgy compact tools, Taguchi DOE technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2874153 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.
Keywords: Damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1699152 Optimization of Design Parameters for Wire Mesh Fin Arrays as a Heat Sink Using Taguchi Method
Authors: Kavita H. Dhanawade, Hanamant S. Dhanawade
Abstract:
Heat transfer enhancement objects like extended surfaces, fins etc. are chosen for their thermal performance as well as for other design parameters depending on various applications. The present paper is on experimental study to investigate the heat transfer enhancement through wire mesh fin arrays equipped with horizontal base plate. The data used in performance analysis were obtained experimentally for the material (mild steel) for different heat inputs such as 40, 60, 80, 100 and 120 watt, by varying wire mesh diameter, fin height and spacing between two fin arrays. Using the Taguchi experimental design method, optimum design parameters and their levels were investigated. Average heat transfer coefficient was considered as a performance characteristic parameter. An L9 (33) orthogonal array was selected as an experimental plan. Optimum results were found by experimenting. It is observed that the wire mesh diameter and fin height have a higher impact on heat transfer coefficient as compared to spacing between two fin arrays.Keywords: Heat transfer enhancement, finned surface, wire mesh diameter, natural convection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 813151 Seismic Assessment of Old Existing RC Buildings with Masonry Infill in Madinah as per ASCE
Authors: Tarek M. Alguhane, Ayman H. Khalil, M. N. Fayed, Ayman M. Ismail
Abstract:
An existing RC building in Madinah is seismically evaluated with and without infill wall. Four model systems have been considered i.e. model I (no infill), model IIA (strut infill-update from field test), model IIB (strut infill- ASCE/SEI 41) and model IIC (strut infill-Soft storey- ASCE/SEI 41). Three dimensional pushover analyses have been carried out using SAP2000 software incorporating inelastic material behavior for concrete, steel and infill walls. Infill wall has been modeled as equivalent strut according to suggested equation matching field test measurements and to the ASCE/SEI 41 equation. The effect of building modeling on the performance point as well as capacity and demand spectra due to EQ design spectrum function in Madinah area has been investigated. The response modification factor (R) for the 5 story RC building is evaluated from capacity and demand spectra (ATC-40) for the studied models. The results are summarized and discussed.
Keywords: Infill wall, Pushover Analysis, Response Modification Factor, Seismic Assessment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3260150 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-Based Nanocomposite Hollow Sphere Structures
Authors: M. Amirjan
Abstract:
In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano-alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength, and energy absorption. It was found that, as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400μm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.Keywords: Hollow sphere structure foam, nanocomposite, t/D (thickness, diameter), powder metallurgy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399149 Probabilistic Modelling of Marine Bridge Deterioration
Authors: P.C. Ryan, A.J. O' Connor
Abstract:
Chloride induced corrosion of steel reinforcement is the main cause of deterioration of reinforced concrete marine structures. This paper investigates the relative performance of alternative repair options with respect to the deterioration of reinforced concrete bridge elements in marine environments. Focus is placed on the initiation phase of reinforcement corrosion. A laboratory study is described which involved exposing concrete samples to accelerated chloride-ion ingress. The study examined the relative efficiencies of two repair methods, namely Ordinary Portland Cement (OPC) concrete and a concrete which utilised Ground Granulated Blastfurnace Cement (GGBS) as a partial cement replacement. The mix designs and materials utilised were identical to those implemented in the repair of a marine bridge on the South East coast of Ireland in 2007. The results of this testing regime serve to inform input variables employed in probabilistic modelling of deterioration for subsequent reliability based analysis to compare the relative performance of the studied repair options.Keywords: Deterioration, Marine Bridges, Reinforced Concrete, Reliability, Chloride-ion Ingress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006148 Energy Consumption Forecast Procedure for an Industrial Facility
Authors: Tatyana Aleksandrovna Barbasova, Lev Sergeevich Kazarinov, Olga Valerevna Kolesnikova, Aleksandra Aleksandrovna Filimonova
Abstract:
We regard forecasting of energy consumption by private production areas of a large industrial facility as well as by the facility itself. As for production areas, the forecast is made based on empirical dependencies of the specific energy consumption and the production output. As for the facility itself, implementation of the task to minimize the energy consumption forecasting error is based on adjustment of the facility’s actual energy consumption values evaluated with the metering device and the total design energy consumption of separate production areas of the facility. The suggested procedure of optimal energy consumption was tested based on the actual data of core product output and energy consumption by a group of workshops and power plants of the large iron and steel facility. Test results show that implementation of this procedure gives the mean accuracy of energy consumption forecasting for winter 2014 of 0.11% for the group of workshops and 0.137% for the power plants.Keywords: Energy consumption, energy consumption forecasting error, energy efficiency, forecasting accuracy, forecasting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1720147 An Investigation on Material Removal Rate of EDM Process: A Response Surface Methodology Approach
Authors: Azhar Equbal, Anoop Kumar Sood, M. Asif Equbal, M. Israr Equbal
Abstract:
In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (Ton) and spark off time (Toff) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.
Keywords: Electrical discharge machining, electrode, MRR, RSM, ANOVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180146 Mechanism of Damping in Welded Structures using Finite Element Approach
Authors: B. Singh, B. K. Nanda
Abstract:
The characterization and modeling of the dynamic behavior of many built-up structures under vibration conditions is still a subject of current research. The present study emphasizes the theoretical investigation of slip damping in layered and jointed welded cantilever structures using finite element approach. Application of finite element method in damping analysis is relatively recent, as such, some problems particularly slip damping analysis has not received enough attention. To validate the finite element model developed, experiments have been conducted on a number of mild steel specimens under different initial conditions of vibration. Finite element model developed affirms that the damping capacity of such structures is influenced by a number of vital parameters such as; pressure distribution, kinematic coefficient of friction and micro-slip at the interfaces, amplitude, frequency of vibration, length and thickness of the specimen. Finite element model developed can be utilized effectively in the design of machine tools, automobiles, aerodynamic and space structures, frames and machine members for enhancing their damping capacity.Keywords: Amplitude, finite element method, slip damping, tack welding.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1922145 Study on Two Way Reinforced Concrete Slab Using ANSYS with Different Boundary Conditions and Loading
Authors: A. Gherbi, L. Dahmani, A. Boudjemia
Abstract:
This paper presents the Finite Element Method (FEM) for analyzing the failure pattern of rectangular slab with various edge conditions. Non-Linear static analysis is carried out using ANSYS 15 Software. Using SOLID65 solid elements, the compressive crushing of concrete is facilitated using plasticity algorithm, while the concrete cracking in tension zone is accommodated by the nonlinear material model. Smeared reinforcement is used and introduced as a percentage of steel embedded in concrete slab. The behavior of the analyzed concrete slab has been observed in terms of the crack pattern and displacement for various loading and boundary conditions. The finite element results are also compared with the experimental data. One of the other objectives of the present study is to show how similar the crack path found by ANSYS program to those observed for the yield line analysis. The smeared reinforcement method is found to be more practical especially for the layered elements like concrete slabs. The value of this method is that it does not require explicit modeling of the rebar, and thus a much coarser mesh can be defined.
Keywords: ANSYS, cracking pattern, displacements, RC Slab, smeared reinforcement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1271144 Finite Element Modelling of Log Wall Corner Joints
Authors: R. Kalantari, G. Hafeez
Abstract:
The paper presents outcomes of the numerical research performed on standard and dovetail corner joints under lateral loads. An overview of the past research on log shear walls is also presented. To the authors’ best knowledge, currently, there are no specific design guidelines available in the code for the design of log shear walls, implying the need to investigate the performance of log shear walls. This research explores the performance of the log shear wall corner joint system of standard joint and dovetail types using numerical methods based on research available in the literature. A parametric study is performed to study the effect of gap size provided between two orthogonal logs and the presence of wood and steel dowels provided as joinery between log courses on the performance of such a structural system. The research outcomes are the force-displacement curves. Variability of 8% is seen in the reaction forces with the change of gap size for the case of the standard joint, while a variation of 10% is observed in the reaction forces for the dovetail joint system.
Keywords: dovetail joint, finite element modelling, log shear walls, standard joint
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 498143 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle
Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions
Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630142 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions
Authors: M. R.Isvandzibaei, A.Jahani
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.
Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1626141 Analytical Proposal to Damage Assessment of Buried Continuous Pipelines during External Blast Loading
Authors: Danesh Nourzadeh, Sepideh Khorshid, Shiro Takada, Khosrow Bargi
Abstract:
In this paper, transversal vibration of buried pipelines during loading induced by underground explosions is analyzed. The pipeline is modeled as an infinite beam on an elastic foundation, so that soil-structure interaction is considered by means of transverse linear springs along the pipeline. The pipeline behavior is assumed to be ideal elasto-plastic which an ultimate strain value limits the plastic behavior. The blast loading is considered as a point load, considering the affected length at some point of the pipeline, in which the magnitude decreases exponentially with time. A closed-form solution for the quasi-static problem is carried out for both elastic and elasticperfect plastic behaviors of pipe materials. At the end, a comparative study on steel and polyethylene pipes with different sizes buried in various soil conditions, affected by a predefined underground explosion is conducted, in which effect of each parameter is discussed.Keywords: Beam on elastic foundation, Buried pipelines, External explosion, Non-linear quasi-static solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2323140 Improvement in Mechanical Behavior of Expulsion with Heat treated Thermite Welded Rail Steel
Authors: S.Rajanna, H.K.Shivanand, Akash Deep B.N
Abstract:
Thermite welding is mainly used in world. The reasons why the thermite welding method is widely used are that the equipment has good mobility and total working time of that is shorter than that of the enclosed arc welding method on site. Moreover, the operating skill, which required for thermite welding, is less than that of for enclosed arc welding. In the present research work, heat treatment and combined 'expulsion and heat treatment' techniques were used improve the mechanical properties and weldment structure. The specimens were cut in the transverse direction from expulsion with Heat treated and heat treated Thermite Welded rails. Specimens were prepared according to AWS standard and subjected to tensile test, Impact test and hardness and their results were tabulated. Microstructural analysis was carried out with the help of SEM. Then analyze to effect of heat treated and 'expulsion with heat treated' with the properties of their thermite welded rails. Compare the mechanical and microstructural properties of thermite welded rails between heat expulsion with heat treated and heat treated. Mechanical and microstructural response expulsion with heat treated thermite welded rail is higher value as compared to heat treatment.Keywords: Expulsion, Heat treatment, Mechanical, Weldment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2946139 Effect of Composite Material on Damping Capacity Improvement of Cutting Tool in Machining Operation Using Taguchi Approach
Authors: S. Ghorbani, N. I. Polushin
Abstract:
Chatter vibrations, occurring during cutting process, cause vibration between the cutting tool and workpiece, which deteriorates surface roughness and reduces tool life. The purpose of this study is to investigate the influence of cutting parameters and tool construction on surface roughness and vibration in turning of aluminum alloy AA2024. A new design of cutting tool is proposed, which is filled up with epoxy granite in order to improve damping capacity of the tool. Experiments were performed at the lathe using carbide cutting insert coated with TiC and two different cutting tools made of AISI 5140 steel. Taguchi L9 orthogonal array was applied to design of experiment and to optimize cutting conditions. By the help of signal-to-noise ratio and analysis of variance the optimal cutting condition and the effect of the cutting parameters on surface roughness and vibration were determined. Effectiveness of Taguchi method was verified by confirmation test. It was revealed that new cutting tool with epoxy granite has reduced vibration and surface roughness due to high damping properties of epoxy granite in toolholder.
Keywords: ANOVA, damping capacity, surface roughness, Taguchi method, vibration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3064138 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading
Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh
Abstract:
This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.
Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2379137 Clamped-clamped Boundary Conditions for Analysis Free Vibration of Functionally Graded Cylindrical Shell with a Ring based on Third Order Shear Deformation Theory
Authors: M.Pourmahmoud, M.Salmanzadeh, M.Mehrani, M.R.Isvandzibaei
Abstract:
In this paper a study on the vibration of thin cylindrical shells with ring supports and made of functionally graded materials (FGMs) composed of stainless steel and nickel is presented. Material properties vary along the thickness direction of the shell according to volume fraction power law. The cylindrical shells have ring supports which are arbitrarily placed along the shell and impose zero lateral deflections. The study is carried out based on third order shear deformation shell theory (T.S.D.T). The analysis is carried out using Hamilton-s principle. The governing equations of motion of FGM cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of ring support position and the influence of boundary conditions. The present analysis is validated by comparing results with those available in the literature.Keywords: Vibration, FGM, Cylindrical shell, Hamilton'sprinciple, Ring support.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1611136 Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles
Authors: Thanh-Duoc Phan, Saden H. Zahiri, S. H. Masood, Mahnaz Jahedi
Abstract:
In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.Keywords: cold gas dynamic spray, X-ray diffraction, explicit finite element analysis, residual strain, titanium, particle impact, deformation behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756135 Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application
Authors: Bambang Ariantara, Nandy Putra, Rangga Aji Pamungkas
Abstract:
The development of electric vehicle batteries have resulted in very high energy density lithium-ion batteries. However, this progress is accompanied by the risk of thermal runaway, which can result in serious accidents. Heat pipes are heat exchangers that are suitable to be applied in electric vehicle battery thermal management for their lightweight, compact size and do not require external power supply. This paper aims to examine experimentally a Flat Plate Loop Heat Pipe (FPLHP) performance as a heat exchanger in thermal management system of lithium-ion battery for electric vehicle application. The heat generation of the battery was simulated using a cartridge heater. Stainless steel screen mesh was used as the capillary wick. Distilled water, alcohol and acetone were used as working fluids with a filling ratio of 60%. It was found that acetone gives the best performance that produces thermal resistance of 0.22 W/°C with 50°C evaporator temperature at heat flux load of 1.61 W/cm2.Keywords: Electric vehicle, flat plate loop heat pipe, lithium-ion battery, thermal management system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3239134 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete
Authors: Maruful H. Mazumder, Raymond I. Gilbert
Abstract:
The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.
Keywords: Bond stress, Development length, Lapped splice length, Reinforced concrete.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2274133 Effect of Tube Materials and Special Coating on Coke Deposition in the Steam Cracking of Hydrocarbons
Authors: A. Niaei, D. Salari , N. Daneshvar, A. Chamandeh, R. Nabavi
Abstract:
The steam cracking reactions are always accompanied with the formation of coke which deposits on the walls of the tubular reactors. The investigation has attempted to control catalytic coking by the applying aluminum, zinc and ceramic coating like aluminum-magnesium by thermal spray and pack cementation method. Rate of coke formation during steam cracking of naphtha has been investigated both for uncoated stainless steel (with different alloys) and metal coating constructed with thermal Spray and pack cementation method with metal powders of Aluminum, Aluminum-Magnesium, zinc, silicon, nickel and chromium. The results of the study show that passivating the surface of SS321 with a coating of Aluminum and Aluminum-Magnesium can significantly reduce the rate of coke deposition during naphtha pyrolysis. SEM and EDAX techniques (Philips XL Series) were used to examine the coke deposits formed by the metal-hydrocarbon reactions. Our objective was to separate the different stages by identifying the characteristic morphologies.Keywords: Steam Cracking, Pyrolysis, Coke deposition, thermalspray, Pack Cementation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010132 Experimental and Simulation Stress Strain Comparison of Hot Single Point Incremental Forming
Authors: Amar Al-Obaidi, Verena Kräusel, Dirk Landgrebe
Abstract:
Induction assisted single point incremental forming (IASPIF) is a flexible method and can be simply utilized to form a high strength alloys. Due to the interaction between the mechanical and thermal properties during IASPIF an evaluation for the process is necessary to be performed analytically. Therefore, a numerical simulation was carried out in this paper. The numerical analysis was operated at both room and elevated temperatures then compared with experimental results. Fully coupled dynamic temperature displacement explicit analysis was used to simulated the hot single point incremental forming. The numerical analysis was indicating that during hot single point incremental forming were a combination between complicated compression, tension and shear stresses. As a result, the equivalent plastic strain was increased excessively by rising both the formed part depth and the heating temperature during forming. Whereas, the forming forces were decreased from 5 kN at room temperature to 0.95 kN at elevated temperature. The simulation shows that the maximum true strain was occurred in the stretching zone which was the same as in experiment.Keywords: Induction heating, single point incremental forming, FE modeling, advanced high strength steel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 937131 Effect of Tempering Temperature and Time on the Corrosion Behaviour of 304 and 316 Austenitic Stainless Steels in Oxalic Acid
Authors: Ayo S. Afolabi, Johannes H. Potgieter, Ambali S. Abdulkareem, Nonhlanhla Fungura
Abstract:
The effect of different tempering temperatures and heat treatment times on the corrosion resistance of austenitic stainless steels in oxalic acid was studied in this work using conventional weight loss and electrochemical measurements. Typical 304 and 316 stainless steel samples were tempered at 150oC, 250oC and 350oC after being austenized at 1050oC for 10 minutes. These samples were then immersed in 1.0M oxalic acid and their weight losses were measured at every five days for 30 days. The results show that corrosion of both types of ASS samples increased with an increase in tempering temperature and time and this was due to the precipitation of chromium carbides at the grain boundaries of these metals. Electrochemical results also confirm that the 304 ASS is more susceptible to corrosion than 316 ASS in this medium. This is attributed to the molybdenum in the composition of the latter. The metallographic images of these samples showed non–uniform distribution of precipitated chromium carbides at the grain boundaries of these metals and unevenly distributed carbides and retained austenite phases which cause galvanic effects in the medium.
Keywords: ASS, corrosion, oxalic acid, tempering, temperature, time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3419130 Finite Element Application to Estimate Inservice Material Properties using Miniature Specimen
Authors: G. Partheepan, D.K. Sehgal, R.K. Pandey
Abstract:
This paper presents a method for determining the uniaxial tensile properties such as Young-s modulus, yield strength and the flow behaviour of a material in a virtually non-destructive manner. To achieve this, a new dumb-bell shaped miniature specimen has been designed. This helps in avoiding the removal of large size material samples from the in-service component for the evaluation of current material properties. The proposed miniature specimen has an advantage in finite element modelling with respect to computational time and memory space. Test fixtures have been developed to enable the tension tests on the miniature specimen in a testing machine. The studies have been conducted in a chromium (H11) steel and an aluminum alloy (AR66). The output from the miniature test viz. load-elongation diagram is obtained and the finite element simulation of the test is carried out using a 2D plane stress analysis. The results are compared with the experimental results. It is observed that the results from the finite element simulation corroborate well with the miniature test results. The approach seems to have potential to predict the mechanical properties of the materials, which could be used in remaining life estimation of the various in-service structures.Keywords: ABAQUS, finite element, miniature test, tensileproperties
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1730