@article{(Open Science Index):https://publications.waset.org/pdf/10002128,
	  title     = {Performance of Flat Plate Loop Heat Pipe for Thermal Management of Lithium-Ion Battery in Electric Vehicle Application},
	  author    = {Bambang Ariantara and  Nandy Putra and  Rangga Aji Pamungkas},
	  country	= {},
	  institution	= {},
	  abstract     = {The development of electric vehicle batteries have
resulted in very high energy density lithium-ion batteries. However,
this progress is accompanied by the risk of thermal runaway, which
can result in serious accidents. Heat pipes are heat exchangers that
are suitable to be applied in electric vehicle battery thermal
management for their lightweight, compact size and do not require
external power supply. This paper aims to examine experimentally a
Flat Plate Loop Heat Pipe (FPLHP) performance as a heat exchanger
in thermal management system of lithium-ion battery for electric
vehicle application. The heat generation of the battery was simulated
using a cartridge heater. Stainless steel screen mesh was used as the
capillary wick. Distilled water, alcohol and acetone were used as
working fluids with a filling ratio of 60%. It was found that acetone
gives the best performance that produces thermal resistance of 0.22
W/°C with 50°C evaporator temperature at heat flux load of 1.61
	    journal   = {International Journal of Mechanical and Mechatronics Engineering},
	  volume    = {9},
	  number    = {10},
	  year      = {2015},
	  pages     = {1701 - 1705},
	  ee        = {https://publications.waset.org/pdf/10002128},
	  url   	= {https://publications.waset.org/vol/106},
	  bibsource = {https://publications.waset.org/},
	  issn  	= {eISSN: 1307-6892},
	  publisher = {World Academy of Science, Engineering and Technology},
	  index 	= {Open Science Index 106, 2015},