In the present work response surface methodology (RSM) based central composite design (CCD) is used for analyzing the electrical discharge machining (EDM) process. For experimentation, mild steel is selected as work piece and copper is used as electrode. Three machining parameters namely current (I), spark on time (T_{on<\/sub>) and spark off time (Toff<\/sub>) are selected as the input variables. The output or response chosen is material removal rate (MRR) which is to be maximized. To reduce the number of runs face centered central composite design (FCCCD) was used. ANOVA was used to determine the significance of parameter and interactions. The suitability of model is tested using Anderson darling (AD) plot. The results conclude that different parameters considered i.e. current, pulse on and pulse off time; all have dominant effect on the MRR. At last, the optimized parameter setting for maximizing MRR is found through main effect plot analysis.<\/p>\r\n","references":"[1]\tJ. Kozak, and K.P. Rajurkar, \u201cHybrid machining processes: Evaluation and development,\u201d Proceedings of 2nd International Conference on Machining and measurement of sculptured surfaces, Krakow, 2001, p. 501-536.\r\n[2]\tH. Ramasawmy, and L. Blunt, \u201cEffect of EDM process parameters on 3D surface topography,\u201d Journal of Materials Processing Technology, vol. 148, pp. 155-164, 2004.\r\n[3]\tR. Williams, \u201cMachining Hard Materials. Dearborn, MI: Machining Data Handbook\u201d 3rd ed. vol. 2, Society of Manufacturing Engineers: 1980.\r\n[4]\tK. Ho, and S. Newman, \u201cState of the art electrical discharge machining (EDM),\u201d International Journal of Machine Tools & Manufacture, vol. 43, pp. 1287-1300, 2000.\r\n[5]\tJ. Soni, and G. Chakraverti, \u201cExperimental investigation on migration of material during EDM of T 215 Cr12 die steel,\u201d Journal of Materials Processing Technology, vol. 56, pp. 439-451, 1996.\r\n[6]\tF. Roethel, L. Kosec, and V. Garbajs, \u201cContributions to the micro-analysis of spark eroded surfaces,\u201d Annals of the CIRP, vol. 25, no. 1, pp. 135-140, 1976.\r\n[7]\tA. Erden, \u201cEffect of materials on the mechanism of electric discharge machining (EDM),\u201d Journal of Engineering and Material Technology, vol. 105, pp. 132-138, 1983.\r\n[8]\tM. Bayramoglu, and A. W. Duffill, \u201cManufacturing linear and circular contours using CNC EDM and frame type tools,\u201d International Journal of Machine Tools and Manufacture,1995; vol. 35, no. 8, pp. 1125-1136, 1995.\r\n[9]\tM. Bayramoglu, and A. W. Duffill, \u201cProduction of three dimensional shapes using computational electrical discharge machining,\u201d In Proc. Int. M.T.D.R., pp. 107-112, 1992.\r\n[10]\tK. Saito, T. Kishinami, H. Konno, M. Sato, and H. Takeyama, \u201cDevelopment of numerical contouring control electrical discharge machining (NCC-EDM),\u201d Ann. CIRP, vol. 35, no. 1, pp. 117-120, 1986.\r\n[11]\tI. Puertas, and C.J. Lusis, \u201cA study on the machining parameters optimization of electrical discharge machining,\u201d Journal of materials processing technology, vol. 143-144, pp. 521-526, 2003.\r\n[12]\tM. A. Lajis, H.C.D. Mohd Radzi, and A. K. M. Nurul Amin, \u201cThe Implementation of Taguchi Method on EDM Process of Tungsten Carbide,\u201d European Journal of Scientific Research, vol. 36, no. 4, pp. 609-617, 2009.\r\n[13]\t S. H. Tomadi, M. A. Hassan, and Z. Hamedon, \u201cAnalysis of the Influence of EDM Parameters on Surface Quality, Material Removal Rate and Electrode Wear of Tungsten Carbide,\u201d International Multi Conference of Engineers and Computer Scientists: 2, 2009.\r\n[14]\tK. D. Chattopadhyay, S. Verma, P. S. Satsangi, and P. C. Sharma, \u201cDevelopment of empirical model for different process parameters during rotary electrical discharge machining of copper\u2013steel (EN-8) system\u2016,\u201d Journal of materials processing technology, vol. 20, no. 9, pp. 1454-1465, 2008.\r\n[15]\tS. Dewangan, and C. K. Biswas, \u201cExperiment Investigation of Machining Parameters for EDM Using U- shaped Electrode of AISI P20 Tool Steel,\u201d International conference on emerging trends in mechanical engineering :1-6, 2011.\r\n[16]\tT, Rajmohan, R., Prabhu, G., Subba Rao, and K., Palanikumar, \u201cOptimization of Machining Parameters in Electrical Discharge Machining (EDM) of (304) stainless steel,\u201d International Conference on Modeling, Optimization and Computing (ICMOC): 103-1036, 2012. \r\n[17]\tP. M. George, B. K.Raghunath, L. M. Manocha, and A. M. Warrier, \u201cEDM machining of carbon-carbon composite- a taguchi approach,\u201d Journal of Materials Processing Technology, vol. 145, no. 1, pp. 66-71, 2003.\r\n[18]\t T. A. El-Taweel, \u201cMulti-response Optimization of EDM with Al-Cu-Si-TiC P\/M Composite Electrode,\u201d International Journal of Advance Manufacturing Technology, vol. 44, pp. 100-113, 2009.\r\n[19]\tM. S. Sohani, V. N. Gaitonde, B. Siddeswarappa, and A. S. Deshpande, \u201cInvestigations into the Effect of Tool Shapes with Size Factor consideration in Sink Electrical Discharge Machining (EDM) Process,\u201d International Journal of Advance Manufacturing Technology, vol. 45, pp. 1131-1145, 2009. \r\n[20]\tV. Muthukumar, N. Rajesh, R. Venkatasamy, A. Sureshbabu, and N. Senthilkumar, \u201cMathematical Modelling for Radial Overcut on Electrical Discharge Machining of Incoloy 800 by Response Surface Methodology,\u201d Procedia material science, vol. 6, pp. 1674-1682, 2014. \r\n[21]\tK. M. Patel, P. M. Panday, and P. V. Rao, \u201cDetermination of an Optimum Parametric Combination Using a Surface Roughness Prediction Model for EDM of Al2O3\/SiCw\/TiC Ceramic Composite\u2016,\u201d Journal of Materials and Manufacturing Processes, vol. 24, pp. 675-682, 2009. \r\n[22]\tAsif Iqbal, A. K. M., Khan, and Ahsan Ali, \u201cModeling and Analysis of MRR, EWR and Surface Roughness in EDM Milling through Response Surface Methodology\u2016,\u201d American Journal of Engineering and Applied Sciences, vol. 3, no. 4, pp. 611-619, 2010.\r\n[23]\tA. Kumar, V. Kumar, and J. Kumar, \u201cPrediction of Surface Roughness in Wire Electric Discharge Machining (WEDM) Process based on Response Surface Methodology,\u201d International Journal of Engineering & Technology, vol. 2, no. 4, pp. 708-719, 2014. \r\n[24]\tS. K. Majhi, M.K Pradhan, and Hargovind Soni, \u201cOptimization of EDM parameters using RSM, GRA and Entropy method,\u201d International Journal of Applied Research in Mechanical Engineering, vol. 3, no. 1, pp. 82-87, 2013. \r\n[25]\tS. V. Subrahmanyam, and M. M M. Sarcar, \u201cEvaluation of Optimal Parameters for machining with Wire cut EDM Using Grey-Taguchi Method,\u201d International Journal of Scientific and Research Publications, vol. 3, no. 3, pp. 1-9, 2013. \r\n[26]\tMilan Kumar Das, Kaushik Kumar, Tapan Kr. Barman,and Prasanta Sahoo, \u201cApplication of Artificial bee Colony Algorithm Optimization of MRR and Surface Roughness in EDM of EN31 tool steel,\u201d Procedia material science, vol. 6, pp. 741-751, 2014. \r\n[27]\tP. S. Bharti, S. Maheshwari, and C. Sharma, \u201cMmulti-objective optimization of electric-discharge machining process using controlled elitist NSGA-II. Journal of mechanical science and technology, vol. 26, no. 6, pp. 1875-1883, 2012. \r\n[28]\tC. Montgomery, \u201cDesign and Analysis of Experiments,\u201d Response surface method and designs. John Wiley and Sons, Inc., New Jersey, 2005.\r\n[29]\tA.N. Armstrong, \u201cPharmaceutical Experimental Design and Interpretation,\u201d New York. Taylor & Francis group, 2006.\r\n[30]\tM. Fattouh, M. Elkhabeery, and A.H. Fayed, \u201cModelling of some response parameters in EDM,\u201d In: AME Fourth Conference Military Technical College, Cairo, Egypt.1990.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 124, 2017"}}