Search results for: Concrete reinforcement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 921

Search results for: Concrete reinforcement

321 A Review on Geomembrane Characteristics and Application in Geotechnical Engineering

Authors: Sandra Ghavam Shirazi, Komeil Valipourian, Mohammad Reza Golhashem

Abstract:

This paper represents the basic idea and mechanisms associated with the durability of geomembranes and discusses the factors influencing the service life and temperature of geomembrane liners. Geomembrane durability is stated as field performance and laboratory test outcomes under various conditions. Due to the high demand of geomembranes as landfill barriers and their crucial role in sensitive projects, sufficient service life of geomembranes is very important, therefore in this paper, the durability, the effect of temperature on geomembrane and the role of this type of reinforcement in different types of soil will be discussed. Also, the role of geomembrane in the earthquake will be considered in the last part of the paper.

Keywords: Geomembrane, durability temperature soil mechanic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 912
320 Neural Network Models for Actual Cost and Actual Duration Estimation in Construction Projects: Findings from Greece

Authors: Panagiotis Karadimos, Leonidas Anthopoulos

Abstract:

Predicting the actual cost and duration in construction projects concern a continuous and existing problem for the construction sector. This paper addresses this problem with modern methods and data available from past public construction projects. 39 bridge projects, constructed in Greece, with a similar type of available data were examined. Considering each project’s attributes with the actual cost and the actual duration, correlation analysis is performed and the most appropriate predictive project variables are defined. Additionally, the most efficient subgroup of variables is selected with the use of the WEKA application, through its attribute selection function. The selected variables are used as input neurons for neural network models through correlation analysis. For constructing neural network models, the application FANN Tool is used. The optimum neural network model, for predicting the actual cost, produced a mean squared error with a value of 3.84886e-05 and it was based on the budgeted cost and the quantity of deck concrete. The optimum neural network model, for predicting the actual duration, produced a mean squared error with a value of 5.89463e-05 and it also was based on the budgeted cost and the amount of deck concrete.

Keywords: Actual cost and duration, attribute selection, bridge projects, neural networks, predicting models, FANN TOOL, WEKA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177
319 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: Sustainability, post-disaster temporary housing, integrated value model for sustainability assessment (MIVES), life cycle assessment (LCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
318 A Study on Cement-Based Composite Containing Polypropylene Fibers and Finely Ground Glass Exposed to Elevated Temperatures

Authors: O. Alidoust, I. Sadrinejad, M. A. Ahmadi

Abstract:

High strength concrete has been used in situations where it may be exposed to elevated temperatures. Numerous authors have shown the significant contribution of polypropylene fiber to the spalling resistance of high strength concrete. When cement-based composite that reinforced by polypropylene fibers heated up to 170 °C, polypropylene fibers readily melt and volatilize, creating additional porosity and small channels in to the matrix that cause the poor structure and low strength. This investigation develops on the mechanical properties of mortar incorporating polypropylene fibers exposed to high temperature. Also effects of different pozzolans on strength behaviour of samples at elevated temperature have been studied. To reach this purpose, the specimens were produced by partial replacement of cement with finely ground glass, silica fume and rice husk ash as high reactive pozzolans. The amount of this replacement was 10% by weight of cement to find the effects of pozzolans as a partial replacement of cement on the mechanical properties of mortars. In this way, lots of mixtures with 0%, 0.5%, 1% and 1.5% of polypropylene fibers were cast and tested for compressive and flexural strength, accordance to ASTM standard. After that specimens being heated to temperatures of 300, 600 °C, respectively, the mechanical properties of heated samples were tested. Mechanical tests showed significant reduction in compressive strength which could be due to polypropylene fiber melting. Also pozzolans improve the mechanical properties of sampels.

Keywords: Mechanical properties, compressive strength, Flexural strength, pozzolanic behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
317 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: Dam, failure, limit-state, Monte Carlo simulation, reliability, probability, simulation, sliding, Taylor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1217
316 Investigation of the Operational Principle and Flow Analysis of a Newly Developed Dry Separator

Authors: Sung Uk Park, Young Su Kang, Sangmo Kang, Yong Kweon Suh

Abstract:

Mineral product, waste concrete (fine aggregates), waste in the optical field, industry, and construction employ separators to separate solids and classify them according to their size. Various sorting machines are used in the industrial field such as those operating under electrical properties, centrifugal force, wind power, vibration, and magnetic force. Study on separators has been carried out to contribute to the environmental industry. In this study, we perform CFD analysis for understanding the basic mechanism of the separation of waste concrete (fine aggregate) particles from air with a machine built with a rotor with blades. In CFD, we first performed two-dimensional particle tracking for various particle sizes for the model with 1 degree, 1.5 degree, and 2 degree angle between each blade to verify the boundary conditions and the method of rotating domain method to be used in 3D. Then we developed 3D numerical model with ANSYS CFX to calculate the air flow and track the particles. We judged the capability of particle separation for given size by counting the number of particles escaping from the domain toward the exit among 10 particles issued at the inlet. We confirm that particles experience stagnant behavior near the exit of the rotating blades where the centrifugal force acting on the particles is in balance with the air drag force. It was also found that the minimum particle size that can be separated by the machine with the rotor is determined by its capability to stay at the outlet of the rotor channels.

Keywords: Environmental industry, Separator, CFD, Fine aggregate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
315 Concept of a Pseudo-Lower Bound Solution for Reinforced Concrete Slabs

Authors: M. De Filippo, J. S. Kuang

Abstract:

In construction industry, reinforced concrete (RC) slabs represent fundamental elements of buildings and bridges. Different methods are available for analysing the structural behaviour of slabs. In the early ages of last century, the yield-line method has been proposed to attempt to solve such problem. Simple geometry problems could easily be solved by using traditional hand analyses which include plasticity theories. Nowadays, advanced finite element (FE) analyses have mainly found their way into applications of many engineering fields due to the wide range of geometries to which they can be applied. In such cases, the application of an elastic or a plastic constitutive model would completely change the approach of the analysis itself. Elastic methods are popular due to their easy applicability to automated computations. However, elastic analyses are limited since they do not consider any aspect of the material behaviour beyond its yield limit, which turns to be an essential aspect of RC structural performance. Furthermore, their applicability to non-linear analysis for modeling plastic behaviour gives very reliable results. Per contra, this type of analysis is computationally quite expensive, i.e. not well suited for solving daily engineering problems. In the past years, many researchers have worked on filling this gap between easy-to-implement elastic methods and computationally complex plastic analyses. This paper aims at proposing a numerical procedure, through which a pseudo-lower bound solution, not violating the yield criterion, is achieved. The advantages of moment distribution are taken into account, hence the increase in strength provided by plastic behaviour is considered. The lower bound solution is improved by detecting over-yielded moments, which are used to artificially rule the moment distribution among the rest of the non-yielded elements. The proposed technique obeys Nielsen’s yield criterion. The outcome of this analysis provides a simple, yet accurate, and non-time-consuming tool of predicting the lower-bound solution of the collapse load of RC slabs. By using this method, structural engineers can find the fracture patterns and ultimate load bearing capacity. The collapse triggering mechanism is found by detecting yield-lines. An application to the simple case of a square clamped slab is shown, and a good match was found with the exact values of collapse load.

Keywords: Computational mechanics, lower bound method, reinforced concrete slabs, yield-line.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1081
314 Creep Behaviour of Heterogeneous Timber-UHPFRC Beams Assembled by Bonding: Experimental and Analytical Investigation

Authors: K. Kong, E. Ferrier, L. Michel

Abstract:

The purpose of this research was to investigate the creep behaviour of the heterogeneous Timber-UHPFRC beams. New developments have been done to further improve the structural performance, such as strengthening of the timber (glulam) beam by bonding composite material combine with an ultra-high performance fibre reinforced concrete (UHPFRC) internally reinforced with or without carbon fibre reinforced polymer (CFRP) bars. However, in the design of wooden structures, in addition to the criteria of strengthening and stiffness, deformability due to the creep of wood, especially in horizontal elements, is also a design criterion. Glulam, UHPFRC and CFRP may be an interesting composite mix to respond to the issue of creep behaviour of composite structures made of different materials with different rheological properties. In this paper, we describe an experimental and analytical investigation of the creep performance of the glulam-UHPFRC-CFRP beams assembled by bonding. The experimental investigations creep behaviour was conducted for different environments: in- and outside under constant loading for approximately a year. The measured results are compared with numerical ones obtained by an analytical model. This model was developed to predict the creep response of the glulam-UHPFRCCFRP beams based on the creep characteristics of the individual components. The results show that heterogeneous glulam-UHPFRC beams provide an improvement in both the strengthening and stiffness, and can also effectively reduce the creep deflection of wooden beams.

Keywords: Carbon fibre-reinforced polymer (CFRP) bars, creep behaviour, glulam, ultra-high performance fibre reinforced concrete (UHPFRC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2530
313 Collaborative Team Work in Higher Education: A Case Study

Authors: Swapna Bhargavi Gantasala

Abstract:

If teamwork is the key to organizational learning, productivity and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.

Keywords: Collaboration, Leadership, Motivation, Reinforcement Teamwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
312 Learning Classifier Systems Approach for Automated Discovery of Censored Production Rules

Authors: Suraiya Jabin, Kamal K. Bharadwaj

Abstract:

In the recent past Learning Classifier Systems have been successfully used for data mining. Learning Classifier System (LCS) is basically a machine learning technique which combines evolutionary computing, reinforcement learning, supervised or unsupervised learning and heuristics to produce adaptive systems. A LCS learns by interacting with an environment from which it receives feedback in the form of numerical reward. Learning is achieved by trying to maximize the amount of reward received. All LCSs models more or less, comprise four main components; a finite population of condition–action rules, called classifiers; the performance component, which governs the interaction with the environment; the credit assignment component, which distributes the reward received from the environment to the classifiers accountable for the rewards obtained; the discovery component, which is responsible for discovering better rules and improving existing ones through a genetic algorithm. The concatenate of the production rules in the LCS form the genotype, and therefore the GA should operate on a population of classifier systems. This approach is known as the 'Pittsburgh' Classifier Systems. Other LCS that perform their GA at the rule level within a population are known as 'Mitchigan' Classifier Systems. The most predominant representation of the discovered knowledge is the standard production rules (PRs) in the form of IF P THEN D. The PRs, however, are unable to handle exceptions and do not exhibit variable precision. The Censored Production Rules (CPRs), an extension of PRs, were proposed by Michalski and Winston that exhibit variable precision and supports an efficient mechanism for handling exceptions. A CPR is an augmented production rule of the form: IF P THEN D UNLESS C, where Censor C is an exception to the rule. Such rules are employed in situations, in which conditional statement IF P THEN D holds frequently and the assertion C holds rarely. By using a rule of this type we are free to ignore the exception conditions, when the resources needed to establish its presence are tight or there is simply no information available as to whether it holds or not. Thus, the IF P THEN D part of CPR expresses important information, while the UNLESS C part acts only as a switch and changes the polarity of D to ~D. In this paper Pittsburgh style LCSs approach is used for automated discovery of CPRs. An appropriate encoding scheme is suggested to represent a chromosome consisting of fixed size set of CPRs. Suitable genetic operators are designed for the set of CPRs and individual CPRs and also appropriate fitness function is proposed that incorporates basic constraints on CPR. Experimental results are presented to demonstrate the performance of the proposed learning classifier system.

Keywords: Censored Production Rule, Data Mining, GeneticAlgorithm, Learning Classifier System, Machine Learning, PittsburgApproach, , Reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1516
311 Finite Element Approach to Evaluate Time Dependent Shear Behavior of Connections in Hybrid Steel-PC Girder under Sustained Loading

Authors: Mohammad Najmol Haque, Takeshi Maki, Jun Sasaki

Abstract:

Headed stud shear connections are widely used in the junction or embedded zone of hybrid girder to achieve whole composite action with continuity that can sustain steel-concrete interfacial tensile and shear forces. In Japan, Japan Road Association (JRA) specifications are used for hybrid girder design that utilizes very low level of stud capacity than those of American Institute of Steel Construction (AISC) specifications, Japan Society of Civil Engineers (JSCE) specifications and EURO code. As low design shear strength is considered in design of connections, the time dependent shear behavior due to sustained external loading is not considered, even not fully studied. In this study, a finite element approach was used to evaluate the time dependent shear behavior for headed studs used as connections at the junction. This study clarified, how the sustained loading distinctively impacted on changing the interfacial shear of connections with time which was sensitive to lodging history, positions of flanges, neighboring studs, position of prestress bar and reinforcing bar, concrete strength, etc. and also identified a shear influence area. Stud strength was also confirmed through pushout tests. The outcome obtained from the study may provide an important basis and reference data in designing connections of hybrid girders with enhanced stud capacity with due consideration of their long-term shear behavior.

Keywords: Finite element approach, hybrid girder, headed stud shear connections, sustained loading, time dependent shear behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 616
310 Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

Authors: D. Korsacilar, C. Atas

Abstract:

In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance.

Keywords: Ballistic, Composite, Thermoplastic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2876
309 Sintering Atmosphere Effects on the Densification of Al-SiC Compacts

Authors: Tadeusz Pieczonka, Jan Kazior

Abstract:

The influence of SiC powder addition on densification of Al-SiC compacts during sintering in different atmospheres was investigated. It was performed in a dilatometer in flowing nitrogen, nitrogen/hydrogen (95/5 by volume) and argon. Fine, F500 grade of SiC powder was used. Mixtures containing 10 and 30 vol.% of SiC reinforcement were prepared in a Turbula mixer. Green compacts of about 82% of theoretical density were made of each mixture. For comparison, compacts made of pure aluminum powder were also investigated. It was shown that nitrogen is the best sintering atmosphere because only in this atmosphere did shrinkage take place. Its amount is lowered by ceramic powder addition, i.e. the more SiC the less densification occurs. Additionally, the formation of clusters, enhanced in compacts containing 30 vol.% SiC, is also responsible for limiting the shrinkage. Microstructural examinations of sintered composites revealed that sintering of compacts occurs in the presence of the liquid phase exclusively in nitrogen.

Keywords: Al-SiC composites, densification, sintering atmosphere.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3511
308 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1850
307 Influence of Local Soil Conditions on Optimal Load Factors for Seismic Design of Buildings

Authors: Miguel A. Orellana, Sonia E. Ruiz, Juan Bojórquez

Abstract:

Optimal load factors (dead, live and seismic) used for the design of buildings may be different, depending of the seismic ground motion characteristics to which they are subjected, which are closely related to the type of soil conditions where the structures are located. The influence of the type of soil on those load factors, is analyzed in the present study. A methodology that is useful for establishing optimal load factors that minimize the cost over the life cycle of the structure is employed; and as a restriction, it is established that the probability of structural failure must be less than or equal to a prescribed value. The life-cycle cost model used here includes different types of costs. The optimization methodology is applied to two groups of reinforced concrete buildings. One set (consisting on 4-, 7-, and 10-story buildings) is located on firm ground (with a dominant period Ts=0.5 s) and the other (consisting on 6-, 12-, and 16-story buildings) on soft soil (Ts=1.5 s) of Mexico City. Each group of buildings is designed using different combinations of load factors. The statistics of the maximums inter-story drifts (associated with the structural capacity) are found by means of incremental dynamic analyses. The buildings located on firm zone are analyzed under the action of 10 strong seismic records, and those on soft zone, under 13 strong ground motions. All the motions correspond to seismic subduction events with magnitudes M=6.9. Then, the structural damage and the expected total costs, corresponding to each group of buildings, are estimated. It is concluded that the optimal load factors combination is different for the design of buildings located on firm ground than that for buildings located on soft soil.

Keywords: Life-cycle cost, optimal load factors, reinforced concrete buildings, total costs, type of soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
306 Behavior of the Foundation of Bridge Reinforced by Rigid and Flexible Inclusions

Authors: T. Karech A. Noui, T. Bouzid

Abstract:

This article presents a comparative study by numerical analysis of the behavior of reinforcements of clayey soils by flexible columns (stone columns) and rigid columns (piles). The numerical simulation was carried out in 3D for an assembly of foundation, columns and a pile of a bridge. Particular attention has been paid to take into account the installation of the columns. Indeed, in practice, due to the compaction of the column, the soil around it sustains a lateral expansion and the horizontal stresses are increased. This lateral expansion of the column can be simulated numerically. This work represents a comparative study of the interaction between the soil on one side, and the two types of reinforcement on the other side, and their influence on the behavior of the soil and of the pile of a bridge.

Keywords: Piles, stone columns, interaction, foundation, settlement, consolidation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
305 Collapse Load Analysis of Reinforced Concrete Pile Group in Liquefying Soils under Lateral Loading

Authors: Pavan K. Emani, Shashank Kothari, V. S. Phanikanth

Abstract:

The ultimate load analysis of RC pile groups has assumed a lot of significance under liquefying soil conditions, especially due to post-earthquake studies of 1964 Niigata, 1995 Kobe and 2001 Bhuj earthquakes. The present study reports the results of numerical simulations on pile groups subjected to monotonically increasing lateral loads under design amounts of pile axial loading. The soil liquefaction has been considered through the non-linear p-y relationship of the soil springs, which can vary along the depth/length of the pile. This variation again is related to the liquefaction potential of the site and the magnitude of the seismic shaking. As the piles in the group can reach their extreme deflections and rotations during increased amounts of lateral loading, a precise modeling of the inelastic behavior of the pile cross-section is done, considering the complete stress-strain behavior of concrete, with and without confinement, and reinforcing steel, including the strain-hardening portion. The possibility of the inelastic buckling of the individual piles is considered in the overall collapse modes. The model is analysed using Riks analysis in finite element software to check the post buckling behavior and plastic collapse of piles. The results confirm the kinds of failure modes predicted by centrifuge test results reported by researchers on pile group, although the pile material used is significantly different from that of the simulation model. The extension of the present work promises an important contribution to the design codes for pile groups in liquefying soils.

Keywords: Collapse load analysis, inelastic buckling, liquefaction, pile group.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
304 Fundamental Natural Frequency of Chromite Composite Floor System

Authors: Farhad Abbas Gandomkar, Mona Danesh

Abstract:

This paper aims to determine Fundamental Natural Frequency (FNF) of a structural composite floor system known as Chromite. To achieve this purpose, FNFs of studied panels are determined by development of Finite Element Models (FEMs) in ABAQUS program. American Institute of Steel Construction (AISC) code in Steel Design Guide Series 11 presents a fundamental formula to calculate FNF of a steel framed floor system. This formula has been used to verify results of the FEMs. The variability in the FNF of the studied system under various parameters such as dimensions of floor, boundary conditions, rigidity of main and secondary beams around the floor, thickness of concrete slab, height of composite joists, distance between composite joists, thickness of top and bottom flanges of the open web steel joists, and adding tie beam perpendicular on the composite joists, is determined. The results show that changing in dimensions of the system, its boundary conditions, rigidity of main beam, and also adding tie beam, significant changes the FNF of the system up to 452.9%, 50.8%, - 52.2%, %52.6%, respectively. In addition, increasing thickness of concrete slab increases the FNF of the system up to 10.8%. Furthermore, the results demonstrate that variation in rigidity of secondary beam, height of composite joist, and distance between composite joists, and thickness of top and bottom flanges of open web steel joists insignificant changes the FNF of the studied system up to -0.02%, -3%, -6.1%, and 0.96%, respectively. Finally, the results of this study help designer predict occurrence of resonance, comfortableness, and design criteria of the studied system.

Keywords: Fundamental natural frequency, chromite composite floor system, finite element method, low and high frequency floors, comfortableness, resonance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
303 Reinforcement Effect on Dynamic Properties of Saturated Sand

Authors: R. Ziaie Moayed, M. Alibolandi

Abstract:

Dynamic behavior of soil are evaluated relative to a number of factors including: strain level, density, number of cycles, material type, fine content, geosynthetic inclusion, saturation, and effective stress .This paper investigate the dynamic behavior of saturated reinforced sand under cyclic stress condition. The cyclic triaxial tests are conducted on remolded specimens under various CSR which reinforced by different arrangement of non-woven geotextile. Aforementioned tests simulate field reinforced saturated deposits during earthquake or other cyclic loadings. This analysis revealed that the geotextile arrangement played dominant role on dynamic soil behavior and as geotextile close to top of specimen, the liquefaction resistance increased.

Keywords: Dynamic Behavior, Reinforced Sand, Triaxial Test, Non-woven Geotextile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
302 A Survey in Techniques for Imbalanced Intrusion Detection System Datasets

Authors: Najmeh Abedzadeh, Matthew Jacobs

Abstract:

An intrusion detection system (IDS) is a software application that monitors malicious activities and generates alerts if any are detected. However, most network activities in IDS datasets are normal, and the relatively few numbers of attacks make the available data imbalanced. Consequently, cyber-attacks can hide inside a large number of normal activities, and machine learning algorithms have difficulty learning and classifying the data correctly. In this paper, a comprehensive literature review is conducted on different types of algorithms for both implementing the IDS and methods in correcting the imbalanced IDS dataset. The most famous algorithms are machine learning (ML), deep learning (DL), synthetic minority over-sampling technique (SMOTE), and reinforcement learning (RL). Most of the research use the CSE-CIC-IDS2017, CSE-CIC-IDS2018, and NSL-KDD datasets for evaluating their algorithms.

Keywords: IDS, intrusion detection system, imbalanced datasets, sampling algorithms, big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1091
301 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing

Authors: Daniel M. Muntean, Viorel Ungureanu

Abstract:

More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.

Keywords: Adaptive building, energy efficiency, retrofitting, residential buildings, smart grid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1020
300 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: Design studies, computational model(s), case study/studies, modeling, coupling beam.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3299
299 Lightweight Materials for Building Finishing

Authors: Sarka Keprdova, Nikol Zizkova

Abstract:

This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the light weighting of polymermodified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete.

Keywords: Additives, light aggregates, lightweight materials, lightweight mortars, polymer-modified mortars.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
298 A Review on Natural Fibre Reinforced Polymer Composites

Authors: C. W. Nguong, S. N. B. Lee, D. Sujan

Abstract:

Renewable natural fibres such as oil palm, flax, and pineapple leaf can be utilized to obtain new high performance polymer materials. The reuse of waste natural fibres as reinforcement for polymer is a sustainable option to the environment. However, due to its high hydroxyl content of cellulose, natural fibres are susceptible to absorb water that affects the composite mechanical properties adversely. Research found that Nano materials such as Nano Silica Carbide (n-SiC) and Nano Clay can be added into the polymer composite to overcome this problem by enhancing its mechanical properties in wet condition. The addition of Nano material improves the tensile and wear properties, flexural stressstrain behaviour, fracture toughness, and fracture strength of polymer natural composites in wet and dry conditions.

Keywords: Natural fibres, Nano Silica Carbide, Nano Clay, Wet Condition, Polymer Composites.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8534
297 A Model of Sustainability in the Accommodation Sector

Authors: L. S. Zavodna, J. Zavodny Pospisil

Abstract:

The aim of this paper is to identify the factors for sustainability in the accommodation sector. Although sustainability is a current trend in tourism, not many facilities know how to apply the concept in practice. This paper presents a model for the implementation of sustainability in hotels, hostels, campgrounds, or other facilities. First, there are identified sections of each accommodation facility, which can contribute to sustainability. Furthermore, concrete steps are presented to transfer this model into reality.

Keywords: Accommodation sector, model, sustainable tourism, sustainability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
296 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil

Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani

Abstract:

Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.

Keywords: Soil improvement, waste bottle chips, reinforcement, silt, Triaxial test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1951
295 Polyisoprene-coated Silica/Natural Rubber Composite

Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon

Abstract:

The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.

Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2990
294 The Emerging Global Judicial Ethics: Issues and Problems

Authors: Caroline Foulquier-Expert

Abstract:

In many states around the world, actions to improve judicial ethics are developing significantly through the production of professional standards for judges. The quest to improve the ethics of judges is legitimate. However, as this development tends to be very important at the moment, some risks it presents must be highlighted. Indeed, if the objective of improving Judges’ Ethics is legitimate, it can also lead to banalization of justice, reinforcement of criticism against the judiciary and to broach incidentally the question of the limits of judgment, which is most perilous for the independence of the judiciary. This research, based on case studies, interviews with judges and an analysis of the literature on this topic (mainly from the United States of America and European Union Member States), tends to draw attention to the fact that the result of the development of these professional standards is that the ethical requirements of judges become ethical requirements of justice, which is an undesirable effect of which we must be aware, in order to prevent it.

Keywords: Judicial Ethics, Codes of conduct, Independence, Limits of Judgment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 889
293 Carbon Nanofibers Reinforced P(VdF-HFP) Based Gel Polymer Electrolyte for Lithium-Ion Battery Application

Authors: Anjan Sil, Rajni Sharma, Subrata Ray

Abstract:

The effect of carbon nanofibers (CNFs) on the electrical properties of Poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP)) based gel polymer electrolytes has been investigated in the present work. The length and diameter ranges of CNFs used in the present work are 5-50 μm and 200-600 nm respectively. The nanocomposite gel polymer electrolytes have been synthesized by solution casting technique with varying CNFs content in terms of weight percentage. Electrochemical impedance analysis demonstrates that the reinforcement of carbon nanofibers significantly enhances the ionic conductivity of the polymer electrolyte. The decrease of crystallinity of P(VdF-HFP) due the addition of CNFs has been confirmed by X-ray diffraction (XRD). The interaction of CNFs with various constituents of nanocomposite gel polymer electrolytes has been assessed by Fourier Transform Infrared (FTIR) spectroscopy. Moreover CNFs added gel polymer electrolytes offer superior thermal stability as compared to that of CNFs free electrolytes as confirmed by Thermogravimetric analysis (TGA).

Keywords: Polymer electrolytes, CNFs, Ionic conductivity, TGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927
292 Distributed Coverage Control by Robot Networks in Unknown Environments Using a Modified EM Algorithm

Authors: Mohammadhosein Hasanbeig, Lacra Pavel

Abstract:

In this paper, we study a distributed control algorithm for the problem of unknown area coverage by a network of robots. The coverage objective is to locate a set of targets in the area and to minimize the robots’ energy consumption. The robots have no prior knowledge about the location and also about the number of the targets in the area. One efficient approach that can be used to relax the robots’ lack of knowledge is to incorporate an auxiliary learning algorithm into the control scheme. A learning algorithm actually allows the robots to explore and study the unknown environment and to eventually overcome their lack of knowledge. The control algorithm itself is modeled based on game theory where the network of the robots use their collective information to play a non-cooperative potential game. The algorithm is tested via simulations to verify its performance and adaptability.

Keywords: Distributed control, game theory, multi-agent learning, reinforcement learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 964