

Abstract—In the recent past Learning Classifier Systems have

been successfully used for data mining. Learning Classifier System
(LCS) is basically a machine learning technique which combines
evolutionary computing, reinforcement learning, supervised or
unsupervised learning and heuristics to produce adaptive systems. A
LCS learns by interacting with an environment from which it
receives feedback in the form of numerical reward. Learning is
achieved by trying to maximize the amount of reward received. All
LCSs models more or less, comprise four main components; a finite
population of condition–action rules, called classifiers; the
performance component, which governs the interaction with the
environment; the credit assignment component, which distributes the
reward received from the environment to the classifiers accountable
for the rewards obtained; the discovery component, which is
responsible for discovering better rules and improving existing ones
through a genetic algorithm. The concatenate of the production rules
in the LCS form the genotype, and therefore the GA should operate
on a population of classifier systems. This approach is known as the
‘Pittsburgh’ Classifier Systems. Other LCS that perform their GA at
the rule level within a population are known as ‘Mitchigan’ Classifier
Systems. The most predominant representation of the discovered
knowledge is the standard production rules (PRs) in the form of IF P
THEN D. The PRs, however, are unable to handle exceptions and do
not exhibit variable precision. The Censored Production Rules
(CPRs), an extension of PRs, were proposed by Michalski and
Winston that exhibit variable precision and supports an efficient
mechanism for handling exceptions. A CPR is an augmented
production rule of the form: IF P THEN D UNLESS C, where
Censor C is an exception to the rule. Such rules are employed in
situations, in which conditional statement IF P THEN D holds
frequently and the assertion C holds rarely. By using a rule of this
type we are free to ignore the exception conditions, when the
resources needed to establish its presence are tight or there is simply
no information available as to whether it holds or not. Thus, the IF P
THEN D part of CPR expresses important information, while the
UNLESS C part acts only as a switch and changes the polarity of D
to ~D. In this paper Pittsburgh style LCSs approach is used for
automated discovery of CPRs. An appropriate encoding scheme is
suggested to represent a chromosome consisting of fixed size set of
CPRs. Suitable genetic operators are designed for the set of CPRs
and individual CPRs and also appropriate fitness function is proposed
that incorporates basic constraints on CPR. Experimental results are

Suraiya Jabin is a Ph.D. scholar and lecturer at Department of Computer

Science, FMSIT, Jamia Hamdard, New Delhi, India (phone: +919810822834;
fax: +91116089686 email: suraiya224@gmail.com).

Kamal K. Bharadwaj, is a professor at the School of Computer and
Systems Sciences (SC & SS), Jawaharlal Nehru University (JNU), New Delhi,
India (e-mail: kbharadwaj@gmail.com).

presented to demonstrate the performance of the proposed learning
classifier system.

Keywords—Censored Production Rule, Data Mining, Genetic

Algorithm, Learning Classifier System, Machine Learning, Pittsburg
Approach, , Reinforcement learning.

I. INTRODUCTION
ATA mining deals with the discovery of hidden
knowledge, unexpected patterns and new rules from

large databases [3]. The idea is to build computer programs
that sift through databases automatically, seeking regularities
or patterns [1].

Data Mining is regarded as the key element of a much more
elaborate process called Knowledge Discovery in Databases
(KDD) [3] which is defined as the non – trivial process of
identifying valid, novel, and ultimately understandable
patterns in data” by Fayyad (1996) [2]. Machine learning
provides the technical basis of data mining. There is no magic
in machine learning, no hidden power, and no alchemy.
Instead, there is an identifiable body of simple and practical
techniques that can often extract useful information from raw
data. Some well known techniques are Decision trees,
Classification rules, neural networks, statistical modeling,
linear models, Instance based learning, Clustering, and
Evolutionary Computation such as Genetic algorithms (GA)
and Learning Classifier Systems (LCS) etc [1].

Learning Classifier Systems (LCS) [Holland, 1976] are a
machine learning technique which combines evolutionary
computing, reinforcement learning, supervised learning or
unsupervised learning, and heuristics to produce adaptive
systems. They are rule based systems, where the rules are
usually in the traditional production system form of “IF
premise THEN decision”. An evolutionary algorithm and
heuristics are used to search the space of possible rules, whilst
a credit assignment algorithm is used to assign utility to
existing rules, thereby guiding the search for better rules. The
LCS formalism was introduced by John Holland [5] and based
around his better known invention – the Genetic Algorithm
(GA) [4].

In 1960’s, John Holland, also known as father of Genetic
Algorithm, introduced GA as method of studying natural
adaptive system and designing artifical adaptive systems

Learning Classifier Systems Approach for
Automated Discovery of Censored Production

Rules
Suraiya Jabin, and Kamal K. Bharadwaj

D

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2730International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

based on Darwinian natural selection and Mendelian genetics.
This method eliminates weak elements by favoring retention
of optimal and near optimal individuals (survival of the
fittest), and recombines features of good individuals to
perhaps make better individuals. Genetic algorithms (GAs)
use this method to search the representation space of artificial
adaptitve system, That represent a problem’s search space as
sequences (strings) of symbols chosen from some alphabet
(usually a binary alphabet). The algorithm performs
optimization by manipulating a finite population of
chrosomes. In each of a number of cycles called generations,
the GA creates a set of new chromosomes by crossover,
inversion and mutation, which correlate to processes in natural
reproduction. In technology and science GAs have been used
as adaptive algorithms for solving practical problems and also
as computational models of natural evolutionary systems [10].

The application of genetic algorithms to machine learning
has been addressed from two different approaches: the
‘Michigan’ approach and the ‘Pittsburgh’ approach.

The Michigan approach also known as classifier systems
(CS) is based on the model introduced by Holland [4, 8]. A
classifier system is an adaptive system that learns a set of rules
by the interaction of the environment, from which it receives
reward. Two main components can be distinguished:

• the Credit Assignment Algorithm which evaluates
the efficiency of rules.

• the Discovery component performed by a genetic
algorithm which acts on the rule level, seeking for
new promising rules that can improve the system
performance.

In the Pittsburgh approach also known as learning systems
(LS), each individual represent a whole rule set instead of a
single rule. This allows evaluation of an individual as a
complete solution to the learning problem, avoiding thus the
use of credit assignment algorithm. The fitness of each
individual is evaluated as the performance of its rule set as a
whole, considering different aspects as the classification
accuracy, the no. of required rules etc. Both approaches have
successfully been applied on a variety of classification
problems [6]. Successful data mining applications of learning
classifier systems have been shown in the past (Bernado,
Llora, & Garrell, 2001) investigating and comparing
performance of the accuracy-based Michigan-style LCS XCS
(Wilson, 1995) and the Pittsburgh-style LCS GALE (Llora &
Garrell, 2001). Both systems showed competent performance
in comparison to six other machine learning systems [7].

The most predominant representation of the discovered
knowledge is the standard production rules (PRs) in the form
If P then D. The PRs, however, are unable to handle
exceptions and do not exhibit variable precision [21].
Exceptions, which focus on a very small portion of a dataset,
have been ignored or discarded as noise in machine learning,
but the goal of KDD is broader and it is always interesting to
discover exceptions, as they challenge the existing knowledge
and often led to the growth of knowledge in new directions

[22].
As an extension of PR, Michalski and Winston [11] have

suggested Censored Production Rule (CPR) as an underlying
representational and computational mechanism to enable logic
based systems to exhibit variable precision, in which certainty
varies, while specificity stays constant. A CPR has the form
‘If P Then D Unless C’, where C (censor) is the exception
condition. Such rules are employed in situations, in which the
conditional statement ‘If P then D’ holds frequently and the
assertion C holds rarely. By using a rule of this type we are
free to ignore the censor (exception) conditions, when the
resources needed to establish its presence are tight or there is
simply no information available as to whether it holds or does
not hold. As time permits, the censor condition C is evaluated
establishing the conclusion D with higher certainty, if C does
not or simply changing the polarity of D to ~D if C holds. For
Example, consider the assertion that birds fly:

V x : is_bird (x) → flies(x)
This general assertion enables us to expect that any newly

observed bird flies. But not all birds fly. For example
penguins, ostriches, emus, kiwis and domestic turkeys do not
fly. Even a flying bird cannot fly when it is dead, or sick or
has broken wings. Now we can write:

Vx: is_bird(x)→ flies(x) └ is_ostrich(x)
 V is_penguin(x)
 V is_kiwi(x)
 V has_broken_wings(x)
 V is_dead(x)
 V is_sick(x)
A CPR may have more than one censor conditions, say C1,

C2, …..Cn and is denoted as:
If P Then D Unless C1 V C2 V……..Cn.
In this paper we have presented Pittsburgh style LCS for

automated discovery of augmented production rules with
exceptions in the form of CPRs.

II. LCS FOR CPR DISCOVERY
So many systems following LCS approach have been

developed; one such system is EpiCS developed by John
Homes, which was based on early works of Wilson. EpiCS
was designed to use standard production and association rule
as underlying knowledge but in our proposed work, designed
automated system is using Censored Production Rules as
underlying knowledge representation.
 John Holmes developed a stimulus-response learning
classifier system, BOOLE++ [15, 16] and later, EpiCS [19]
which was based on Wilson’s early work on the Animat [17],
BOOLE [18] and NEWBOOLE [14]. Since the designed
automated system is completely based on EpiCS, so some
more light is thrown on EpiCS. Like other LCS, EpiCS’s
representation scheme expresses a rule as a condition-action
pair, or a classifier, where in attributes are encoded as
“genes”. The left-hand side (condition) of the classifier is
commonly referred to as a taxon, and the right-hand, the
action. More commonly, the action is described as the action

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2731International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

bit, since the type of problems for which one uses EpiCS
typically have a single, dichotomous classification, such as
dead/alive, diseased/healthy, etc. Classifiers are contained in a
population of constant size. EpiCS is constructed using the
three-part framework of a typical LCS, the performance,
reinforcement, and discovery components as shown in Fig. 1.

Fig. 1 High – level schematic of EpiCS [13]

A. Performance Component
The performance component creates a subset of all

classifiers in the population whose taxa (premise part) match a
stream of data received as input from the environment. In this
way, the performance component is analogous to a forward
chaining rule-base system. All classifiers in the population
whose taxa match the input stream comprise a Match Set [M],
even though some of these classifiers may advocate different
actions. The process is equivalent to the triggering of rules,
and [M] is analogous to an agenda in an expert system. From
[M], the classifier with the proportionally highest strength is
selected. The action of this classifier is then used as the output
of the system; this process is analogous to the firing of a rule
in an expert system [13].

B. Implementation
In classification problems, the environment is a training set

of preclassified examples; each example is described by a
vector of attributes and a class label; the goal of learning is to
form a description that can be used to classify previously
unseen examples with high accuracy [9]. Input to this
automated censored production rule discovery system is a
training set of preclassified examples. As an example consider
the following bird training data set shown in Table I.

Chromosome representation Scheme: Since we have

followed Pittsburgh approach, individual chromosome is
represented by sets of CPRs as and a gene as one censored
production rule.

A CPR or gene is divided into three parts: IF part,
CENSOR part, THEN part (Fig. 2).

Fig. 2 The structure of a Classifier

Each attribute in the rule (IF part or UNLESS part or THEN

part) is encoded by single digit (0, 1, 2, 3 ……n where n is the
number of values of that attribute). For example, bird attribute
can take 3 values as shown below:

Similarly the other attributes are encoded as shown in Fig.

3.

Fig. 3 Individual attribute representation for Bird data set

TABLE I
BIRD TRAINING DATA SET

No. Bird Wings_broken Penguin Dead Fly
1 Yes No No No Yes
2 Yes No No No Yes
3 Yes No No No Yes
4 Yes No No No Yes
5 Yes No No No Yes
6 Yes No No No Yes
7 Yes No No No Yes
8 Yes No No No Yes
9 Yes No No No Yes
10 Yes No No No Yes
11 Yes No No No Yes
12 Yes No No No Yes
13 Yes No No No Yes
14 Yes No No No Yes
15 Yes No No No Yes
16 Yes No No No Yes
17 Yes No No No Yes
18 Yes No No No Yes
19 Yes No No No Yes
20 Yes No No No Yes
21 Yes No No No Yes
22 Yes No No No Yes

23 Yes No No No Yes

24 Yes No No No Yes

25 Yes No No No Yes

26 Yes No No No Yes

27 Yes No Yes No No

28 Yes No No Yes No

29 Yes Yes No No No

30 Yes No Yes Yes No

31 Yes Yes Yes Yes No

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2732International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

Consider a randomly generated chromosome (rule set) of
size 4 for the bird training data set as shown below in Fig. 4.
CPRs can be absurd also as their generation in first iteration is
totally random.

Chromosome (Rule Set):
CPR 1: if bird = yes then fly = no unless
penguin = no
CPR 2: if bird = yes then fly = yes unless
penguin = yes OR dead = yes
CPR 3: if bird = yes then fly = no unless
 dead = no
CPR 4: if bird = yes then fly = yes unless
wings_broken = yes

Fig. 4 Chromosome representation for Bird Dataset

Let us consider the mushroom data set that includes

descriptions of hypothetical samples corresponding to 23
species of gilled mushrooms in the Agaricus and Lepiota
Family. Each species is identified as definitely edible, or
definitely poisonous.

Number of Instances: 8124
Number of Attributes: 22 (all nominally valued)
Attribute Information: (classes: edible=e, poisonous=p)

Representation of the two attributes cap–shape (having four
values: fibrous, grooves, scaly, smooth) and scap–surface
(having six values: bell, conical, convex, flat, knobbed,
sunken) for mushroom data set are shown in Fig. 5. The other
details regarding chromosome encoding for the rule set of
mushroom data set is similar to that of bird data set.

Fig. 5 Individual attributes representation for Mushroom Dataset

The initial population of rules within each set of same size

is randomly generated with only two restrictions: conditions
that can appear in IF part must be true throughout the training
data set. Further, the set of attributes in IF part (premise) and
the UNLESS part (censor) must be disjoint.

C. Discovery Component
All The discovery component basically employs the genetic

algorithm for generating CPRs. The heart of most LCS
implementations is Genetic Algorithm (GA). Its ability to
search efficiently over complex search spaces is known. Most
methods of GAs have at least the following elements in
common:

• Populations of chromosomes
• Selection according to fitness
• Crossover to produce new offspring
• Random mutation of new offspring

The chromosomes in GAs population typically take the
form of bit strings. Each chromosome can be thought of as a
point in the search space of candidate solutions. The GA
processes populations of chromosomes, successively replacing
one such population with another. The GA most often requires
a fitness function that assigns a score to each chromosome in
the current population. The fitness of a chromosome depends
on how well that chromosome solves the problem at hand.

Fitness function:
Once the genetic representation has been defined, the next

step is to associate to each solution (chromosome) a value
corresponding to the fitness function.
 The most difficult and most important concept of
evolutionary algorithm is the fitness function. It varies greatly
from one type of problem to another. Clearly many criteria are
used to quantify the quality or, Fitness, of a rule over the
database. Some of these criteria are highly qualitative and in
some cases subjective. However in the context of genetic
sarch we must formulate a single numerical quantity that
encapsulates the desirable features [23]. Fitness function is
defined as the average of Accuracy and Coverage as per the
details given below.

A CPR of the form IF P THEN D UNLESS C is equivalent
to two types of production rules:
Type I. Rule with censor part present can be factorized as:
i. P Λ ¬ C → D
ii. P Λ C → ¬D
Type II. Rule without censor
iii. P → D
iv. P → ¬D
Accuracy and Coverage formulae for Rule Type I are:
Ai = | P Λ ¬ C Λ D | ⁄ | P Λ ¬ C |
Ci = | P Λ ¬ C Λ D | ⁄ | D |
Aii = | P Λ C Λ ¬D | ⁄ | P Λ C |
Cii = | P Λ C Λ¬ D | ⁄ | ¬D |
In the proposed system, the fitness formula for rule type I is:
FitnessI = (Ai + Ci + Aii + Cii) ⁄ 4
And for the rules without censor are:
Fitness iii = (Aiii + Ciii) ⁄ 2, where
Aiii = | P Λ D | ⁄ | P |, Ciii = | P Λ D | ⁄ | D |
and Fitness iv = (Aiv + Civ) ⁄ 2, where
Aiv = | P Λ ¬ D | ⁄ | P |, Civ = | P Λ ¬ D | ⁄ |¬ D |

Genetic Operators:
We used conventional genetic operators after appropriate

modifications that were necessary for our system requirements
to generate CPRs. As we have followed Pittsburgh approach,

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2733International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

crossover and mutation operators are implemented at two
levels, i.e. crossover within a set (rule level) and Crossover of
two entire sets; mutation within a set (rule level) and mutation
of an entire set.

 Selection is based on the idea that better individuals get
higher chance of selection proportional to their fitness.

Crossover is a key operator for natural evolution and is
performed at two levels: within a set and between two sets.
For Crossover within a set of size M, M/2 pairs of rules are
randomly chosen one by one using roulette wheel technique.
In this technique each individual rule is assigned a part of
roulette wheel depending on its fitness and wheel is spin for n
times to choose n individuals. For the first best pair chosen a
random crossover point is generated, and tails are exchanged
to create two new offspring. In order to check whether this
crossover is valid or not we make the following check:

Offspring produced are legal if the set of attributes present
in IF part and the set of attributes present in Unless part are
disjoint, IF part is not empty and the offspring produced are
distinct from the original rules. In case the offspring are not
legal, the crossover process is repeated until we get valid
CPRs as offspring.

For one–point Crossover of two set, two highly fit sets of
size n are chosen randomly following again the roulette wheel
technique, then a crossover point, say k, between 1 to n-1 is
randomly chosen, and the tails (kth rule to nth rule) of the two
sets are swapped.

Mutation is the other way to get new genomes and has been

implemented again at two levels mutation within a set and
mutation of an entire set. For Mutation within a set, one rule
is randomly selected from the set, and one of the 3 parts (IF
part, UNLESS part, THEN part) of rule is randomly chosen.
Within that chosen part the value of a randomly selected
attribute is replaced by one of the values that selected attribute
can take.

In mutation within a set we mutated 25 % rules within each
set and while performing mutation of entire set only one rule
is randomly chosen and then mutated. It is to be noted that
after the mutation if the basic constraints on the CPR are not
satisfied then the mutated chromosome is rejected and the
mutation process is repeated until a valid mutated CPR is
produced.

D. Reinforcement Component
Learning from interaction is a foundational idea underlying

nearly all theories of learning and intelligence. Reinforcement
learning is defined not by characterizing learning methods, but
by characterizing a learning problem. Any method that is well
suited to solving that problem, we consider to be a
reinforcement learning method. The basic idea is simply to
capture the most important aspects of the real problem facing
a learning agent interacting with its environment to achieve a
goal.

In supervised learning, the true classification of a training
case is known to the system, and this information is used by
the Reinforcement Component in adjusting the strengths of all
classifiers in the system according to the following scheme.
First, a Correct Set [C] is created from the classifiers present
in a chromosome that are randomly generated by the system,
and the remaining classifiers of that chromosome form the set
[notC]. This assumes that the decision advocated by the
system is correct; if the decision was not correct, then only
[notC] is formed. Next, a tax is applied to [C], reducing the
strength of each classifier in [C] by 10 percent. The purpose
of this tax is to inhibit premature convergence and over fitting:
the accurate classifiers in [C] at one time step may not be
accurate at another. Often, this premature convergence is due
to overly general classifiers in the population. The tax helps to
“smooth” the asymptotic ascent to an accurate, yet optimally
general, population of classifiers. A reward, R, is evenly
distributed among the classifiers in [C]. R is adjusted so that a
higher fraction is apportioned to more general classifiers. The
strength of each classifier in [notC] is diminished
proportionally by a penalty, typically 50%. The effect of this
reward scheme is to exert some degree of selection pressure
on the population, such that classifiers are chosen in the
discovery component for reproduction based on their strength
proportional to that of the other classifiers in the population
[13].

After every time step of GA, for all CPRs within each
chromosome (ruleset), whose fitness is greater than zero we
applied 10% tax by reducing its fitness to avoid over fitting
and premature convergence. All correct CPRs with fitness
greater than zero are awarded a reward proportional to
generality i.e. the more general the rule is, the more reward is
awarded to it. The fitness function with reinforcement
component becomes:

Fitness = Fitness * TAX + 1 / generality,
where TAX = 0.90 for 10 % tax and generality is count of

no. of conditions present in IF part; for rules where censor
part is also present generality is proportionally increased
depending on number of attributes present in UNLESS part.

III. EXPERIMENTAL RESULTS
Experimental results the bird and mushroom data sets have

demonstrated the effectiveness of learning classifier systems
approach to generate CPRs and PRs. In each data set the few
instances that contained missing values were simply removed.
We have assumed that each attribute is categorical, containing
discrete data only, in contrast to continuous data such as age,
height etc. System was run for 400 generations with 4
chromosomes (rule sets); each rule set of size 40. At the end
system maintains set 1 as highly fit set.

Example 1: Let us consider the bird training data set shown

in Table I as input to the designed system. Top five rules in
the highly fit set i.e. set 1 are summarized below in the Table
II.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2734International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

Example 2: After deleting few rows containing missing
values, mushroom training data set was given as input to the
system and results were observed. Top 3 rules in the highly fit
set i.e. set 1 are summarized below in the Table III.

IV. CONCLUSION
In the present work, Learning Classifier Systems approach

is proposed for automated discovery of Censored Production
Rules (CPRs) that can efficiently handle exceptions and deal
with uncertain, incomplete and imprecise knowledge with
resource constraints. Systems using Censored Production
Rules are free to ignore the exception conditions when time is
at premium. The proposed scheme has flexible chromosome
representation. Appropriate crossover, mutation and fitness
functions have been suggested. The current version of the
system handles only categorical attributes and also it cannot
cope up with the missing values. But further work towards
extending the current system will be to handle continuous
valued attributes and missing values is under progress. One of
the most important future research directions would be the
discovery of Hierarchical Censored Production Rules [21]
from large data sets using Learning Classifier Systems
Approach.

REFERENCES
[1] Ian H. Witten and Eibe Frank, ‘DATA MINING: Practical Machine

Learning Tools and Techniques’, Second Edition, Morgan Kaufmann
Publishers, An imprint of Elsevier.

[2] U.M. Fayyad, G. P. Shapiro and P. Smyth, ‘The KDD process for
extracting useful knowledge from volumes from data’, Communication
of ACM, Nov. vol. 39(11), page 27 – 34, 1996.

[3] Pieter Adriaans and Dolf Zantinge, in the book on DATA MINING by
Pearson Ed. Publication.

[4] Holland, J.H. (1975) Adaptation in Natural and Artificial Systems.
University of Michigan Press.

[5] Holland, J.H. (1976) Adaptation. In Rosen & Snell (eds) Progress in
Theoretical Biology, 4.Plenum.

[6] Bernado, E., Llora, X., & Garrell, J. M. (2001). XCS and GALE: a
comparative study of two learning classifier systems with six other
learning algorithms on classification tasks. In Fourth International
Workshop on Learning Classifier Systems - IWLCS-2001 pages 337-
341.

[7] Jaume Bacardit and Martin V. Butz, Enginyeria i Arquitectura La Salle,
Universitat Ramon Llull, Passeig Bonanova 8, 08022, Barcelona,
jbacardit@salleURL.edu, ‘Data Mining in Learning Classifer
Systems:Comparing XCS with GAssist’

[8] Holland, J.H., ‘ Escaping Brittleness: The possibilities of General
Purpose Learning Algorithms applied to Parallel rule – based systems’,
‘Machine Learning: An Artificial Intelligence approach’, Vol. II, pages
593 – 623, 1978.

[9] John H. Homes, Pier Luca lanzi, Wolfgang Stolzmann, Stewart W.
Wilson, ‘Learning Classifier Systems: New Models, Successful
Applications.

[10] Kenneth A. De Jong, ‘Learning with Genetic Algorithms: An
Overview’, Machine Learning, 1988.

[11] Michalski, R.S. and Winston, P.H. 1986, ‘Variable precision logic’,
Artificial Intelligence, Vol 29, pp 121-146.

[12] Winston, P.H., ‘ Learning by augmenting rules and accumulating
censors’, MIT AI Laboratory, AIM – 678, Cambridge, MA, 1982; also in
R.S. Michalski, j.G. Carbonell and T. M Mitchell (Eds.), ‘Machine
learning: An Artificial Intelligence Approach 2 (Morgan Kaufmann,
Los Altos, CA, 1986).

[13] Alwyn Barry, John Holmes, and Xavier Llora, ‘Data Mining using
Learning Classifier Systems’ , pages 21 – 23

[14] Pierre Bonelli, Alexandre Parodi, Sandip Sen, and Stewart W. Wilson.
‘NEWBOOLE: A Fast GBML System’, In International Conference on
Machine Learning, pages 153–159, San Mateo, California, 1990.
Morgan Kaufmann.

[15] John H. Holmes, ‘Evolution-Assisted Discovery of Sentinel Features in
Epidemiologic Surveillance’. PhD thesis, Drexel University, 1996.

[16] John H. Holmes, ‘A genetics-based machine learning approach to
knowledge discovery in clinical data’. Journal of the American Medical
Informatics Association Supplement, 1996.

[17] Stewart W. Wilson,’ Knowledge Growth in an Artificial Animal’. In
Grefenstette [45], pages 16–23. Also appeared in Proceedings of the 4th
Yale.

[18] Stewart W. Wilson,’ Classifier Systems and the Animat Problem’.
Machine Learning, 2:199–228, 1987. Also Research Memo RIS-36r, the
Rowland Institute for Science, Cambridge, MA, 1986.

[19] John H. Holmes, ‘Discovering Risk of Disease with a Learning
Classifier System’, In Thomas Back, editor, Proceedings of the 7th
International Conference on Genetic Algorithms (ICGA97). Morgan
Kaufmann, 1997.

[20] Website address of an online data repository; from where Mushroom
training dataset and other training data sets are taken:
http://www.sgi.com/tech/mlc/db/

[21] K.K. Bharadwaj and N.K. Jain, ‘Hierarchical Censored production Rules
System’, Data and Knowledge Engineering, North Holland, vol. 8, page
19 – 34, 1992.

[22] E. Suzuki, and J.M. Zytkow, ‘Unified algorithm for undirected discovery
of exception rules’, International Journal of Intelligent Systems, vol. 20,
page 673 – 691, 2005.

[23] N.J. Radcliffe and P.D. Surry, ‘Co – operation through hierarchical
competition in genetic data mining’, EPCC – TR94 – 09, 1994.

TABLE II
 EXPERIMENTAL RESULT ON BIRD TRAINING SET

S
N

Top Five Discovered CPRs and
PRs from Highly Fit Set

Accuracy Coverage Fitness

1 if bird = yes then fly = yes 0.838710 1.000000 1.827419
2 if bird = yes then fly = no 0.161290 1.000000 1.522581
3 if bird = yes then fly = yes

unless wings_broken = yes OR
penguin = yes OR dead = yes

1.000000 1.000000 1.400000

4 if bird = yes then fly = yes
unless penguin = yes OR dead
= yes

1.000000 1.000000 1.391667

5 if bird = yes then fly = yes
unless wings_broken = yes OR
dead = yes

1.000000 1.000000 1.391667

TABLE III
EXPERIMENTAL RESULT ON MUSHROOM TRAINING SET

SN Top Three Discovered CPRs from Highly Fit Set Accuracy Coverage Fitness
1 if veil-type = p then edible = e unless scap-surface = g OR scap-color = p OR odor = p OR

gill-attachment = n OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-
below-ring = k OR stalk-color-above-ring = y OR veil-color = n OR ring-number = n OR spore-
print-color = h OR population = c

0.996982

0.998273

1.388333

2

if veil-type = p then edible = e unless scap-surface = g OR scap-color = p OR odor = p OR
gill-attachment = n OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-
below-ring = k OR stalk-color-above-ring = y OR veil-color = n OR ring-number = n OR
spore-print-color = h

0.996976,

0.998273

1.388094

3

if veil-type = p then edible = e unless scap-surface = g OR odor = p OR gill-attachment = n
OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-below-ring = k OR
stalk-color-above-ring = y OR ring-number = n OR spore-print-color = h OR population = c

1.000000

1.000000

1.385464

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:2, No:8, 2008

2735International Scholarly and Scientific Research & Innovation 2(8) 2008 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:2

, N
o:

8,
 2

00
8

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/2

60
9.

pd
f

