
 

 

  
Abstract—In the recent past Learning Classifier Systems have 

been successfully used for data mining. Learning Classifier System 
(LCS) is basically a machine learning technique which combines 
evolutionary computing, reinforcement learning, supervised or 
unsupervised learning and heuristics to produce adaptive systems. A 
LCS learns by interacting with an environment from which it 
receives feedback in the form of numerical reward. Learning is 
achieved by trying to maximize the amount of reward received. All 
LCSs models more or less, comprise four main components; a finite 
population of condition–action rules, called classifiers; the 
performance component, which governs the interaction with the 
environment; the credit assignment component, which distributes the 
reward received from the environment to the classifiers accountable 
for the rewards obtained; the discovery component, which is 
responsible for discovering better rules and improving existing ones 
through a genetic algorithm. The concatenate of the production rules 
in the LCS form the genotype, and therefore the GA should operate 
on a population of classifier systems. This approach is known as the 
‘Pittsburgh’ Classifier Systems. Other LCS that perform their GA at 
the rule level within a population are known as ‘Mitchigan’ Classifier 
Systems. The most predominant representation of the discovered 
knowledge is the standard production rules (PRs) in the form of IF P 
THEN D. The PRs, however, are unable to handle exceptions and do 
not exhibit variable precision. The Censored Production Rules 
(CPRs), an extension of PRs, were proposed by Michalski and 
Winston that exhibit variable precision and supports an efficient 
mechanism for handling exceptions. A CPR is an augmented 
production rule of the form: IF P THEN D UNLESS C, where 
Censor C is an exception to the rule. Such rules are employed in 
situations, in which conditional statement IF P THEN D holds 
frequently and the assertion C holds rarely. By using a rule of this 
type we are free to ignore the exception conditions, when the 
resources needed to establish its presence are tight or there is simply 
no information available as to whether it holds or not. Thus, the IF P 
THEN D part of CPR expresses important information, while the 
UNLESS C part acts only as a switch and changes the polarity of D 
to ~D. In this paper Pittsburgh style LCSs approach is used for 
automated discovery of CPRs. An appropriate encoding scheme is 
suggested to represent a chromosome consisting of fixed size set of 
CPRs. Suitable genetic operators are designed for the set of CPRs 
and individual CPRs and also appropriate fitness function is proposed 
that incorporates basic constraints on CPR. Experimental results are 
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I. INTRODUCTION 
ATA mining deals with the discovery of hidden 
knowledge, unexpected patterns and new rules from 

large databases [3]. The idea is to build computer programs 
that sift through databases automatically, seeking regularities 
or patterns [1].  

Data Mining is regarded as the key element of a much more 
elaborate process called Knowledge Discovery in Databases 
(KDD) [3] which is defined as the non – trivial process of 
identifying valid, novel, and ultimately understandable 
patterns in data” by Fayyad (1996) [2]. Machine learning 
provides the technical basis of data mining. There is no magic 
in machine learning, no hidden power, and no alchemy. 
Instead, there is an identifiable body of simple and practical 
techniques that can often extract useful information from raw 
data. Some well known techniques are Decision trees, 
Classification rules, neural networks, statistical modeling, 
linear models, Instance based learning, Clustering, and 
Evolutionary Computation such as Genetic algorithms (GA) 
and Learning Classifier Systems (LCS) etc [1]. 

Learning Classifier Systems (LCS) [Holland, 1976] are a 
machine learning technique which combines evolutionary 
computing, reinforcement learning, supervised learning or 
unsupervised learning, and heuristics to produce adaptive 
systems. They are rule based systems, where the rules are 
usually in the traditional production system form of “IF 
premise THEN decision”. An evolutionary algorithm and 
heuristics are used to search the space of possible rules, whilst 
a credit assignment algorithm is used to assign utility to 
existing rules, thereby guiding the search for better rules. The 
LCS formalism was introduced by John Holland [5] and based 
around his better known invention – the Genetic Algorithm 
(GA) [4]. 

In 1960’s, John Holland, also known as father of Genetic 
Algorithm,  introduced GA as method of studying natural 
adaptive system and designing artifical adaptive systems 
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based on Darwinian natural selection and Mendelian genetics. 
This method eliminates weak elements by favoring retention 
of optimal and near optimal individuals (survival of the 
fittest), and recombines features of good individuals to 
perhaps make better individuals. Genetic algorithms (GAs) 
use this method to search the representation space of artificial 
adaptitve system, That represent a problem’s search space as 
sequences (strings) of symbols chosen from some alphabet 
(usually a binary alphabet). The algorithm performs 
optimization by manipulating a finite population of 
chrosomes. In each of a number of cycles called generations, 
the GA creates a set of new chromosomes by crossover, 
inversion and mutation, which correlate to processes in natural 
reproduction. In technology and science GAs have been used 
as adaptive algorithms for solving practical problems and also 
as computational models of natural evolutionary systems [10]. 

The application of genetic algorithms to machine learning 
has been addressed from two different approaches: the 
‘Michigan’ approach and the ‘Pittsburgh’ approach. 

The Michigan approach also known as classifier systems 
(CS) is based on the model introduced by Holland [4, 8]. A 
classifier system is an adaptive system that learns a set of rules 
by the interaction of the environment, from which it receives 
reward. Two main components can be distinguished: 

• the Credit Assignment Algorithm which evaluates 
the efficiency of rules. 

• the Discovery component performed by a genetic 
algorithm which acts on the rule level, seeking for 
new promising rules that can improve the system 
performance. 

In the Pittsburgh approach also known as learning systems 
(LS), each individual represent a whole rule set instead of a 
single rule. This allows evaluation of an individual as a 
complete solution to the learning problem, avoiding thus the 
use of credit assignment algorithm. The fitness of each 
individual is evaluated as the performance of its rule set as a 
whole, considering different aspects as the classification 
accuracy, the no. of required rules etc. Both approaches have 
successfully been applied on a variety of classification 
problems [6]. Successful data mining applications of learning 
classifier systems have been shown in the past (Bernado, 
Llora, & Garrell, 2001) investigating and comparing 
performance of the accuracy-based Michigan-style LCS XCS 
(Wilson, 1995) and the Pittsburgh-style LCS GALE (Llora & 
Garrell, 2001). Both systems showed competent performance 
in comparison to six other machine learning systems [7]. 

The most predominant representation of the discovered 
knowledge is the standard production rules (PRs) in the form 
If P then D. The PRs, however, are unable to handle 
exceptions and do not exhibit variable precision [21].  
Exceptions, which focus on a very small portion of a dataset, 
have been ignored or discarded as noise in machine learning, 
but the goal of KDD is broader and it is always interesting to 
discover exceptions, as they challenge the existing knowledge 
and often led to the growth of knowledge in new directions 

[22]. 
As an extension of PR, Michalski and Winston [11] have 

suggested Censored Production Rule (CPR) as an underlying 
representational and computational mechanism to enable logic 
based systems to exhibit variable precision, in which certainty 
varies, while specificity stays constant. A CPR has the form 
‘If P Then D Unless C’, where C (censor) is the exception 
condition. Such rules are employed in situations, in which the 
conditional statement ‘If P then D’ holds frequently and the 
assertion C holds rarely. By using a rule of this type we are 
free to ignore the censor (exception) conditions, when the 
resources needed to establish its presence are tight or there is 
simply no information available as to whether it holds or does 
not hold. As time permits, the censor condition C is evaluated 
establishing the conclusion D with higher certainty, if C does 
not or simply changing the polarity of D to ~D if C holds. For 
Example, consider the assertion that birds fly: 

V x : is_bird (x)   → flies(x) 
This general assertion enables us to expect that any newly 

observed bird flies. But not all birds fly. For example 
penguins, ostriches, emus, kiwis and domestic turkeys do not 
fly. Even a flying bird cannot fly when it is dead, or sick or 
has broken wings. Now we can write: 

Vx: is_bird(x)→ flies(x) └  is_ostrich(x) 
   V is_penguin(x) 
   V is_kiwi(x) 
   V has_broken_wings(x) 
   V is_dead(x) 
   V is_sick(x) 
A CPR may have more than one censor conditions, say C1, 

C2, …..Cn and is denoted as:  
If P Then D Unless C1 V C2 V……..Cn. 
In this paper we have presented Pittsburgh style LCS for 

automated discovery of augmented production rules with 
exceptions in the form of CPRs. 

II. LCS FOR CPR DISCOVERY 
So many systems following LCS approach have been 

developed; one such system is EpiCS developed by John 
Homes, which was based on early works of Wilson. EpiCS 
was designed to use standard production and association rule 
as underlying knowledge but in our proposed work, designed 
automated system is using Censored Production Rules as 
underlying knowledge representation.                  
     John Holmes developed a stimulus-response learning 
classifier system, BOOLE++ [15, 16] and later, EpiCS [19] 
which was based on Wilson’s early work on the Animat [17], 
BOOLE [18] and NEWBOOLE [14]. Since the designed 
automated system is completely based on EpiCS, so some 
more light is thrown on EpiCS. Like other LCS, EpiCS’s 
representation scheme expresses a rule as a condition-action 
pair, or a classifier, where in attributes are encoded as 
“genes”. The left-hand side (condition) of the classifier is 
commonly referred to as a taxon, and the right-hand, the 
action. More commonly, the action is described as the action 
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bit, since the type of problems for which one uses EpiCS 
typically have a single, dichotomous classification, such as 
dead/alive, diseased/healthy, etc. Classifiers are contained in a 
population of constant size. EpiCS is constructed using the 
three-part framework of a typical LCS, the performance, 
reinforcement, and discovery components as shown in Fig. 1. 

 
Fig. 1 High – level schematic of EpiCS [13] 

A.  Performance Component  
The performance component creates a subset of all 

classifiers in the population whose taxa (premise part) match a 
stream of data received as input from the environment. In this 
way, the performance component is analogous to a forward 
chaining rule-base system. All classifiers in the population 
whose taxa match the input stream comprise a Match Set [M], 
even though some of these classifiers may advocate different 
actions. The process is equivalent to the triggering of rules, 
and [M] is analogous to an agenda in an expert system. From 
[M], the classifier with the proportionally highest strength is 
selected. The action of this classifier is then used as the output 
of the system; this process is analogous to the firing of a rule 
in an expert system [13]. 

B. Implementation 
In classification problems, the environment is a training set 

of preclassified examples; each example is described by a 
vector of attributes and a class label; the goal of learning is to 
form a description that can be used to classify previously 
unseen examples with high accuracy [9]. Input to this 
automated censored production rule discovery system is a 
training set of preclassified examples. As an example consider 
the following bird training data set shown in Table I. 

 
Chromosome representation Scheme: Since we have 

followed Pittsburgh approach, individual chromosome is 
represented by sets of CPRs as and a gene as one censored 
production rule.  

A CPR or gene is divided into three parts: IF part, 
CENSOR part, THEN part (Fig. 2). 

 
Fig. 2 The structure of a Classifier  

 
Each attribute in the rule (IF part or UNLESS part or THEN 

part) is encoded by single digit (0, 1, 2, 3 ……n where n is the 
number of values of that attribute). For example, bird attribute 
can take 3 values as shown below: 

 

 
Similarly the other attributes are encoded as shown in Fig. 

3.  
 

 
Fig. 3 Individual attribute representation for Bird data set 

TABLE I 
BIRD TRAINING DATA SET 

No. Bird Wings_broken  Penguin Dead Fly 
1 Yes  No No  No  Yes  
2 Yes  No No  No  Yes  
3 Yes  No No  No  Yes  
4 Yes  No No  No  Yes  
5 Yes  No No  No  Yes  
6 Yes  No No  No  Yes  
7 Yes  No No  No  Yes  
8 Yes  No No  No  Yes  
9 Yes  No No  No  Yes  
10 Yes  No No  No  Yes  
11 Yes  No No  No  Yes  
12 Yes  No No  No  Yes  
13 Yes  No No  No  Yes  
14 Yes  No No  No  Yes  
15 Yes  No No  No  Yes  
16 Yes  No No  No  Yes  
17 Yes  No No  No  Yes  
18 Yes  No No  No  Yes  
19 Yes  No No  No  Yes  
20 Yes  No No  No  Yes  
21 Yes  No No  No  Yes  
22 Yes  No No  No  Yes  

23 Yes  No No  No  Yes  

24 Yes  No No  No  Yes  

25 Yes  No No  No  Yes  

26 Yes  No No  No  Yes  

27 Yes  No Yes  No  No   

28 Yes  No No  Yes   No   

29 Yes  Yes  No No No   

30 Yes No Yes Yes  No   

31 Yes Yes Yes Yes No   
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Consider a randomly generated chromosome (rule set) of 
size 4 for the bird training data set as shown below in Fig. 4. 
CPRs can be absurd also as their generation in first iteration is 
totally random. 

Chromosome (Rule Set): 
CPR 1: if bird = yes  then  fly = no  unless  
penguin = no 
CPR 2: if bird = yes  then  fly = yes  unless  
penguin = yes OR dead = yes  
CPR 3: if bird = yes  then  fly = no  unless 
 dead = no 
CPR 4: if bird = yes  then  fly = yes  unless  
wings_broken = yes 
 

 
Fig. 4 Chromosome representation for Bird Dataset 

 
Let us consider the mushroom data set that includes 

descriptions of hypothetical samples corresponding to 23 
species of gilled mushrooms in the Agaricus and Lepiota 
Family. Each species is identified as definitely edible, or 
definitely poisonous. 

Number of Instances: 8124 
Number of Attributes: 22 (all nominally valued) 
Attribute Information: (classes: edible=e, poisonous=p) 

Representation of the two attributes cap–shape (having four 
values: fibrous, grooves, scaly, smooth) and scap–surface 
(having six values: bell, conical, convex, flat, knobbed, 
sunken) for mushroom data set are shown in Fig. 5. The other 
details regarding chromosome encoding for the rule set of 
mushroom data set is similar to that of bird data set.  

 

 
Fig. 5 Individual attributes representation for Mushroom Dataset 
 
The initial population of rules within each set of same size 

is randomly generated with only two restrictions: conditions 
that can appear in IF part must be true throughout the training 
data set. Further, the set of attributes in IF part (premise) and 
the UNLESS part (censor) must be disjoint.  

C. Discovery Component 
All The discovery component basically employs the genetic 

algorithm for generating CPRs. The heart of most LCS 
implementations is Genetic Algorithm (GA). Its ability to 
search efficiently over complex search spaces is known. Most 
methods of GAs have at least the following elements in 
common: 

• Populations of chromosomes 
• Selection according to fitness 
• Crossover to produce new offspring 
• Random mutation of new offspring 

The chromosomes in GAs population typically take the 
form of bit strings. Each chromosome can be thought of as a 
point in the search space of candidate solutions.  The GA 
processes populations of chromosomes, successively replacing 
one such population with another. The GA most often requires 
a fitness function that assigns a score to each chromosome in 
the current population. The fitness of a chromosome depends 
on how well that chromosome solves the problem at hand. 

 
Fitness function: 
Once the genetic representation has been defined, the next 

step is to associate to each solution (chromosome) a value 
corresponding to the fitness function.  
 The most difficult and most important concept of 
evolutionary algorithm is the fitness function. It varies greatly 
from one type of problem to another. Clearly many criteria are 
used to quantify the quality or, Fitness, of a rule over the 
database. Some of these criteria are highly qualitative and in 
some cases subjective. However in the context of genetic 
sarch we must formulate a single numerical quantity that 
encapsulates the desirable features [23]. Fitness function is 
defined as the average of Accuracy and Coverage as per the 
details given below. 

A CPR of the form IF P THEN D UNLESS C is equivalent 
to two types of production rules: 
Type I.   Rule with censor part present can be factorized as: 
i.     P Λ ¬ C → D 
ii.    P Λ C → ¬D 
Type II.   Rule without censor 
iii.   P → D 
iv.   P → ¬D 
Accuracy and Coverage formulae for Rule Type I are: 
Ai = | P Λ ¬ C Λ D |   ⁄  | P Λ ¬ C |  
Ci = | P Λ ¬ C Λ D |   ⁄  | D |  
Aii = | P Λ  C Λ ¬D |   ⁄  | P Λ  C |  
Cii = | P Λ  C Λ¬ D |   ⁄  | ¬D |  
In the proposed system, the fitness formula for rule type I is: 
FitnessI = (Ai + Ci + Aii + Cii)   ⁄  4 
And for the rules without censor are: 
Fitness iii = (Aiii +  Ciii ) ⁄  2, where 
Aiii = | P Λ D |   ⁄ | P |, Ciii = | P Λ D |   ⁄ | D | 
and Fitness iv = (Aiv + Civ) ⁄ 2, where 
Aiv = | P Λ ¬ D | ⁄ | P |, Civ = | P Λ ¬ D |   ⁄ |¬ D | 
 

Genetic Operators: 
We used conventional genetic operators after appropriate 

modifications that were necessary for our system requirements 
to generate CPRs. As we have followed Pittsburgh approach, 
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crossover and mutation operators are implemented at two 
levels, i.e. crossover within a set (rule level) and Crossover of 
two entire sets; mutation within a set (rule level) and mutation 
of an entire set.  

 
 Selection is based on the idea that better individuals get 
higher chance of selection proportional to their fitness.  
 

Crossover is a key operator for natural evolution and is 
performed at two levels: within a set and between two sets. 
For Crossover within a set of size M, M/2 pairs of rules are 
randomly chosen one by one using roulette wheel technique. 
In this technique each individual rule is assigned a part of 
roulette wheel depending on its fitness and wheel is spin for n 
times to choose n individuals. For the first best pair chosen a 
random crossover point is generated, and tails are exchanged 
to create two new offspring. In order to check whether this 
crossover is valid or not we make the following check: 

Offspring produced are legal if the set of attributes present 
in IF part and the set of attributes present in Unless part are 
disjoint, IF part is not empty and the offspring produced are 
distinct from the original rules. In case the offspring are not 
legal, the crossover process is repeated until we get valid 
CPRs as offspring. 

For one–point Crossover of two set, two highly fit sets of 
size n are chosen randomly following again the roulette wheel 
technique, then a crossover point,  say k, between 1 to n-1 is 
randomly chosen, and the tails (kth rule to nth rule) of the two 
sets are swapped. 

 
Mutation is the other way to get new genomes and has been 

implemented again at two levels mutation within a set and 
mutation of an entire set. For Mutation within a set, one rule 
is randomly selected from the set, and one of the 3 parts (IF 
part, UNLESS part, THEN part) of rule is randomly chosen. 
Within that chosen part the value of a randomly selected 
attribute is replaced by one of the values that selected attribute 
can take. 

In mutation within a set we mutated 25 % rules within each 
set and while performing mutation of entire set only one rule 
is randomly chosen and then mutated. It is to be noted that 
after the mutation if the basic constraints on the CPR are not 
satisfied then the mutated chromosome is rejected and the 
mutation process is repeated until a valid mutated CPR is 
produced. 

D. Reinforcement Component 
Learning from interaction is a foundational idea underlying 

nearly all theories of learning and intelligence. Reinforcement 
learning is defined not by characterizing learning methods, but 
by characterizing a learning problem. Any method that is well 
suited to solving that problem, we consider to be a 
reinforcement learning method. The basic idea is simply to 
capture the most important aspects of the real problem facing 
a learning agent interacting with its environment to achieve a 
goal.  

In supervised learning, the true classification of a training 
case is known to the system, and this information is used by 
the Reinforcement Component in adjusting the strengths of all 
classifiers in the system according to the following scheme. 
First, a Correct Set [C] is created from the classifiers present 
in a chromosome that are randomly generated by the system, 
and the remaining classifiers of that chromosome form the set 
[notC]. This assumes that the decision advocated by the 
system is correct; if the decision was not correct, then only 
[notC] is formed. Next, a tax is applied to [C], reducing the 
strength of each classifier in [C] by 10 percent. The purpose 
of this tax is to inhibit premature convergence and over fitting: 
the accurate classifiers in [C] at one time step may not be 
accurate at another. Often, this premature convergence is due 
to overly general classifiers in the population. The tax helps to 
“smooth” the asymptotic ascent to an accurate, yet optimally 
general, population of classifiers. A reward, R, is evenly 
distributed among the classifiers in [C]. R is adjusted so that a 
higher fraction is apportioned to more general classifiers. The 
strength of each classifier in [notC] is diminished 
proportionally by a penalty, typically 50%. The effect of this 
reward scheme is to exert some degree of selection pressure 
on the population, such that classifiers are chosen in the 
discovery component for reproduction based on their strength 
proportional to that of the other classifiers in the population 
[13]. 

After every time step of GA, for all CPRs within each 
chromosome (ruleset), whose fitness is greater than zero we 
applied 10% tax by reducing its fitness to avoid over fitting 
and premature convergence. All correct CPRs with fitness 
greater than zero are awarded a reward proportional to 
generality i.e. the more general the rule is, the more reward is 
awarded to it. The fitness function with reinforcement 
component becomes:  

Fitness = Fitness * TAX  + 1 / generality, 
where TAX = 0.90 for 10 % tax and generality is count of 

no. of conditions present in IF part; for rules where censor 
part is also present generality is proportionally increased 
depending on number of attributes present in UNLESS part. 

III. EXPERIMENTAL RESULTS 
Experimental results the bird and mushroom data sets have 

demonstrated the effectiveness of learning classifier systems 
approach to generate CPRs and PRs. In each data set the few 
instances that contained missing values were simply removed. 
We have assumed that each attribute is categorical, containing 
discrete data only, in contrast to continuous data such as age, 
height etc. System was run for 400 generations with 4 
chromosomes (rule sets); each rule set of size 40. At the end 
system maintains set 1 as highly fit set.  

 
Example 1: Let us consider the bird training data set shown 

in Table I as input to the designed system. Top five rules in 
the highly fit set i.e. set 1 are summarized below in the Table 
II. 
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Example 2: After deleting few rows containing missing 
values, mushroom training data set was given as input to the 
system and results were observed. Top 3 rules in the highly fit 
set i.e. set 1 are summarized below in the Table III. 

IV. CONCLUSION 
In the present work, Learning Classifier Systems approach 

is proposed for automated discovery of Censored Production 
Rules (CPRs) that can efficiently handle exceptions and deal 
with uncertain, incomplete and imprecise knowledge with 
resource constraints. Systems using Censored Production 
Rules are free to ignore the exception conditions when time is 
at premium. The proposed scheme has flexible chromosome 
representation. Appropriate crossover, mutation and fitness 
functions have been suggested. The current version of the 
system handles only categorical attributes and also it cannot 
cope up with the missing values. But further work towards 
extending the current system will be to handle continuous 
valued attributes and missing values is under progress. One of 
the most important future research directions would be the 
discovery of Hierarchical Censored Production Rules [21] 
from large data sets using Learning Classifier Systems 
Approach. 
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TABLE II 
 EXPERIMENTAL RESULT ON BIRD TRAINING SET 

S
N 

Top Five Discovered CPRs and 
PRs from Highly Fit Set 

Accuracy Coverage Fitness 

1 if bird = yes then fly = yes    0.838710 1.000000 1.827419 
2  if bird = yes then  fly = no    0.161290 1.000000 1.522581 
3 if bird = yes then  fly = yes  

unless wings_broken = yes OR 
penguin = yes OR dead = yes   

1.000000 1.000000 1.400000 

4 if bird = yes  then  fly = yes  
unless penguin = yes OR dead 
= yes 

1.000000 1.000000 1.391667 

5 if bird = yes then  fly = yes  
unless wings_broken = yes OR 
dead = yes   

1.000000 1.000000 1.391667 

TABLE III 
EXPERIMENTAL RESULT ON MUSHROOM TRAINING SET  

SN Top Three Discovered CPRs from Highly Fit Set Accuracy Coverage Fitness 
1 if veil-type = p  then  edible = e  unless scap-surface = g OR scap-color = p OR odor = p OR 

gill-attachment = n OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-
below-ring = k OR stalk-color-above-ring = y OR veil-color = n OR ring-number = n OR spore-
print-color = h OR population = c 

 
0.996982 

 
0.998273 

 
1.388333 

 
2 

if veil-type = p  then  edible = e  unless scap-surface = g OR scap-color = p OR odor = p OR 
gill-attachment = n OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-
below-ring = k OR  stalk-color-above-ring = y OR veil-color = n OR ring-number = n OR 
spore-print-color = h 

 
0.996976, 

 
0.998273 

 
1.388094 

 
3 

if veil-type = p  then  edible = e  unless scap-surface = g OR odor = p OR gill-attachment = n 
OR gill-spacing = d OR gill-color = r OR stalk-root = z OR stalk-surface-below-ring = k OR 
stalk-color-above-ring = y OR ring-number = n OR spore-print-color = h OR population = c 

 
1.000000 

 
1.000000 

 
1.385464 
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