Search results for: Concentrated solar thermal system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9661

Search results for: Concentrated solar thermal system

9061 The Effect of Pyramid Structure on Firm Value

Authors: Irfah Najihah Basir Malan, Norhana Salamudin, Noryati Ahmad

Abstract:

Corporate ownership structure is an important factor influencing firm performance. This study aims to answer the question whether pyramid structure has negative effect on firm value. This study is important because the ownership of public listed companies in Malaysia is highly concentrated. The concentrated ownership such as Malaysia, agency conflict is prevalent between controlling shareholders and minority shareholders. Accordingly, the dominant role of shareholders in firms allows the controlling shareholders (including managers) to expropriate the interest of the minority shareholders for their own private advantage. This research is conducted on pyramidal firms in Malaysia. Applying the Attig Model as the underlying statistical test, it is found that firm value is negatively related to pyramid ownership of Malaysian public listed firms due to the mismatch between cash flow rights and control rights. Future research needs to focus on identifying the heterogeneous factors that improve the generalizability of research.

Keywords: Pyramid structure, Cash flow right, Control right, Firm value, Attig model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3241
9060 Comparison of Processing Conditions for Plasticized PVC and PVB

Authors: Michael Tupý, Jaroslav Císař, Pavel Mokrejš, Dagmar Měřínská, Alice Tesaříková-Svobodová

Abstract:

It is the worldwide problem that the recycled PVB is not recycled and it is wildly stored in landfills. However, PVB has similar chemical properties such as PVC. Moreover, both of these polymers are plasticized. Therefore, the study of thermal properties of plasticized PVC and the recycled PVB obtained by recycling of windshields is carried out. This work has done in order to find nondegradable processing conditions applicable for both polymers. Tested PVC contained 38% of plasticizer diisononyl phthalate (DINP) and PVB was plasticized with 28% of triethylene glycol, bis(2-ethylhexanoate) (3GO). The thermal and thermo-oxidative decomposition of both vinyl polymers are compared by calorimetric analysis and by tensile strength analysis.

Keywords: Poly(vinyl chloride), Poly(vinyl butyral), Recycling, Reprocessing, Thermal analysis, Decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5317
9059 Selection of Photovoltaic Solar Power Plant Investment Projects - An ANP Approach

Authors: P. Aragonés-Beltrán, F. Chaparro-González, J. P. Pastor Ferrando, M. García-Melón

Abstract:

In this paper the Analytic Network Process (ANP) is applied to the selection of photovoltaic (PV) solar power projects. These projects follow a long management and execution process from plant site selection to plant start-up. As a consequence, there are many risks of time delays and even of project stoppage. In the case study presented in this paper a top manager of an important Spanish company that operates in the power market has to decide on the best PV project (from four alternative projects) to invest based on risk minimization. The manager identified 50 project execution delay and/or stoppage risks. The influences among elements of the network (groups of risks and alternatives) were identified and analyzed using the ANP multicriteria decision analysis method. After analyzing the results the main conclusion is that the network model can manage all the information of the real-world problem and thus it is a decision analysis model recommended by the authors. The strengths and weaknesses ANP as a multicriteria decision analysis tool are also described in the paper.

Keywords: Multicriteria decision analysis, Analytic Network Process, Photovoltaic solar power projects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
9058 Modeling Directional Thermal Radiance Anisotropy for Urban Canopy

Authors: Limin Zhao, Xingfa Gu, C. Tao Yu

Abstract:

one of the significant factors for improving the accuracy of Land Surface Temperature (LST) retrieval is the correct understanding of the directional anisotropy for thermal radiance. In this paper, the multiple scattering effect between heterogeneous non-isothermal surfaces is described rigorously according to the concept of configuration factor, based on which a directional thermal radiance model is built, and the directional radiant character for urban canopy is analyzed. The model is applied to a simple urban canopy with row structure to simulate the change of Directional Brightness Temperature (DBT). The results show that the DBT is aggrandized because of the multiple scattering effects, whereas the change range of DBT is smoothed. The temperature difference, spatial distribution, emissivity of the components can all lead to the change of DBT. The “hot spot" phenomenon occurs when the proportion of high temperature component in the vision field came to a head. On the other hand, the “cool spot" phenomena occur when low temperature proportion came to the head. The “spot" effect disappears only when the proportion of every component keeps invariability. The model built in this paper can be used for the study of directional effect on emissivity, the LST retrieval over urban areas and the adjacency effect of thermal remote sensing pixels.

Keywords: Directional thermal radiance, multiple scattering, configuration factor, urban canopy, hot spot effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1585
9057 Quantifying the UK’s Future Thermal Electricity Generation Water Use: Regional Analysis

Authors: Daniel Murrant, Andrew Quinn, Lee Chapman

Abstract:

A growing population has led to increasing global water and energy demand. This demand, combined with the effects of climate change and an increasing need to maintain and protect the natural environment, represents a potentially severe threat to many national infrastructure systems. This has resulted in a considerable quantity of published material on the interdependencies that exist between the supply of water and the thermal generation of electricity, often known as the water-energy nexus. Focusing specifically on the UK, there is a growing concern that the future availability of water may at times constrain thermal electricity generation, and therefore hinder the UK in meeting its increasing demand for a secure, and affordable supply of low carbon electricity. To provide further information on the threat the water-energy nexus may pose to the UK’s energy system, this paper models the regional water demand of UK thermal electricity generation in 2030 and 2050. It uses the strategically important Energy Systems Modelling Environment model developed by the Energy Technologies Institute. Unlike previous research, this paper was able to use abstraction and consumption factors specific to UK power stations. It finds that by 2050 the South East, Yorkshire and Humber, the West Midlands and North West regions are those with the greatest freshwater demand and therefore most likely to suffer from a lack of resource. However, it finds that by 2050 it is the East, South West and East Midlands regions with the greatest total water (fresh, estuarine and seawater) demand and the most likely to be constrained by environmental standards.

Keywords: Water-energy nexus, water resources, abstraction, climate change, power station cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
9056 Prediction of the Thermal Parameters of a High-Temperature Metallurgical Reactor Using Inverse Heat Transfer

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study presents an inverse analysis for predicting the thermal conductivities and the heat flux of a high-temperature metallurgical reactor simultaneously. Once these thermal parameters are predicted, the time-varying thickness of the protective phase-change bank that covers the inside surface of the brick walls of a metallurgical reactor can be calculated. The enthalpy method is used to solve the melting/solidification process of the protective bank. The inverse model rests on the Levenberg-Marquardt Method (LMM) combined with the Broyden method (BM). A statistical analysis for the thermal parameter estimation is carried out. The effect of the position of the temperature sensors, total number of measurements and measurement noise on the accuracy of inverse predictions is investigated. Recommendations are made concerning the location of temperature sensors.

Keywords: Inverse heat transfer, phase change, metallurgical reactor, Levenberg–Marquardt method, Broyden method, bank thickness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671
9055 Energy Saving Suction Hood

Authors: I.Daut, N. Gomesh, M. Irwanto, Y. M. Irwan

Abstract:

Public awareness towards green energy are on the rise and this can be prove by many product being manufactured or prerequired to be made as energy saving devices mainly to save consumer from spending more on utility billing. These schemes are popular nowadays and many homemade appliances are turned into energy saving gadget which attracts the attention of consumers. Knowing the public demands and pattern towards purchasing home appliances thus the idea of “energy saving suction hood (ESSH)" is proposed. The ESSH can be used in many places that require smoke ventilation or even to reduce the room temperature as many conventional suction hoods (CSH) do, but this device works automatically by the usage of sensors that detects the smoke/temperature and automatically spins the exhaust fan. As it turns, the mechanical rotation rotates the AC generator which is coupled together with the fan and then charges the battery. The innovation of this product is, it does not rely on the utility supply as it is also hook up with a solar panel which also charges the battery, Secondly, it generates energy as the exhaust fan mechanically rotates. Thirdly, an energy loop back feature is introduced to this system which will supply for the ventilator fan. Another major innovation is towards interfacing this device with an in house production of generator. This generator is produced by proper design on stator as well as rotor to reduce the losses. A comparison is made between the ESSH and the CSH and result shows that the ESSH saves 172.8kWh/year of utility supply which is used by CSH. This amount of energy can save RM 3.14 from monthly utility bill and a total of RM 37.67 per year. In fact this product can generate 175 Watt of power from generator(75W) and solar panel(100W) that can be used either to supply other household appliances and/or to loop back to supply the fans motor. The innovation of this system is essential for future production of other equipment by using the loopback power method and turning most equipment into a standalone system.

Keywords: Energy saving suction hood (ESSH), conventional suction hoods (CSH), energy, and power

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
9054 Antenna for Energy Harvesting in Wireless Connected Objects

Authors: Nizar Sakli, Chayma Bahar, Chokri Baccouch, Hedi Sakli

Abstract:

If connected objects multiply, they are becoming a challenge in more than one way. In particular by their consumption and their supply of electricity. A large part of the new generations of connected objects will only be able to develop if it is possible to make them entirely autonomous in terms of energy. Some manufacturers are therefore developing products capable of recovering energy from their environment. Vital solutions in certain contexts, such as the medical industry. Energy recovery from the environment is a reliable solution to solve the problem of powering wireless connected objects. This paper presents and study a optically transparent solar patch antenna in frequency band of 2.4 GHz for connected objects in the future standard 5G for energy harvesting and RF transmission.

Keywords: 5G, IoT, wireless communications, antenna, solar cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 777
9053 Multi-Criteria Selection and Improvement of Effective Design for Generating Power from Sea Waves

Authors: Khaled M. Khader, Mamdouh I. Elimy, Omayma A. Nada

Abstract:

Sustainable development is the nominal goal of most countries at present. In general, fossil fuels are the development mainstay of most world countries. Regrettably, the fossil fuel consumption rate is very high, and the world is facing the problem of conventional fuels depletion soon. In addition, there are many problems of environmental pollution resulting from the emission of harmful gases and vapors during fuel burning. Thus, clean, renewable energy became the main concern of most countries for filling the gap between available energy resources and their growing needs. There are many renewable energy sources such as wind, solar and wave energy. Energy can be obtained from the motion of sea waves almost all the time. However, power generation from solar or wind energy is highly restricted to sunny periods or the availability of suitable wind speeds. Moreover, energy produced from sea wave motion is one of the cheapest types of clean energy. In addition, renewable energy usage of sea waves guarantees safe environmental conditions. Cheap electricity can be generated from wave energy using different systems such as oscillating bodies' system, pendulum gate system, ocean wave dragon system and oscillating water column device. In this paper, a multi-criteria model has been developed using Analytic Hierarchy Process (AHP) to support the decision of selecting the most effective system for generating power from sea waves. This paper provides a widespread overview of the different design alternatives for sea wave energy converter systems. The considered design alternatives have been evaluated using the developed AHP model. The multi-criteria assessment reveals that the off-shore Oscillating Water Column (OWC) system is the most appropriate system for generating power from sea waves. The OWC system consists of a suitable hollow chamber at the shore which is completely closed except at its base which has an open area for gathering moving sea waves. Sea wave's motion pushes the air up and down passing through a suitable well turbine for generating power. Improving the power generation capability of the OWC system is one of the main objectives of this research. After investigating the effect of some design modifications, it has been concluded that selecting the appropriate settings of some effective design parameters such as the number of layers of Wells turbine fans and the intermediate distance between the fans can result in significant improvements. Moreover, simple dynamic analysis of the Wells turbine is introduced. Furthermore, this paper strives for comparing the theoretical and experimental results of the built experimental prototype.

Keywords: Renewable energy, oscillating water column, multi-criteria selection, wells turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1220
9052 Energy and Exergy Performance Optimization on a Real Gas Turbine Power Plant

Authors: Farhat Hajer, Khir Tahar, Cherni Rafik, Dakhli Radhouen, Ammar Ben Brahim

Abstract:

This paper presents the energy and exergy optimization of a real gas turbine power plant performance of 100 MW of power, installed in the South East of Tunisia. A simulation code is established using the EES (Engineering Equation Solver) software. The parameters considered are those of the actual operating conditions of the gas turbine thermal power station under study. The results show that thermal and exergetic efficiency decreases with the increase of the ambient temperature. Air excess has an important effect on the thermal efficiency. The emission of NOx rises in the summer and decreases in the winter. The obtained rates of NOx are compared with measurements results.

Keywords: Efficiency, exergy, gas turbine, temperature.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 573
9051 Meshed Antenna for Ku-band Wireless Communication

Authors: Chokri Baccouch, Chayma Bahhar, Hedi Sakli, Nizar Sakli

Abstract:

In this article, we present the combination of an antenna patch structure with a photovoltaic cell in one device for telecommunication applications in isolated environments. The radiating patch element of a patch antenna was replaced by a solar cell. DC current generation is the original feature of the solar cell, but now it was additionally able to receive and transmit electromagnetic waves. A mathematical model which serves in the minimization of power losses of the cell and therefore the improvement in conversion performance was studied. Simulation results of this antenna show a resonance at a frequency of 16.55 GHz in Ku-band with a gain of 4.24 dBi.

Keywords: Electric power collected, optical and electrical losses, optimization of the grid of collection, patch antenna, photovoltaic cell.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 724
9050 System Performance Comparison of Turbo and Trellis Coded Optical CDMA Systems

Authors: M. Kulkarni, R. K. Sinha, D. R. Bhaskar

Abstract:

In this paper, we have compared the performance of a Turbo and Trellis coded optical code division multiple access (OCDMA) system. The comparison of the two codes has been accomplished by employing optical orthogonal codes (OOCs). The Bit Error Rate (BER) performances have been compared by varying the code weights of address codes employed by the system. We have considered the effects of optical multiple access interference (OMAI), thermal noise and avalanche photodiode (APD) detector noise. Analysis has been carried out for the system with and without double optical hard limiter (DHL). From the simulation results it is observed that a better and distinct comparison can be drawn between the performance of Trellis and Turbo coded systems, at lower code weights of optical orthogonal codes for a fixed number of users. The BER performance of the Turbo coded system is found to be better than the Trellis coded system for all code weights that have been considered for the simulation. Nevertheless, the Trellis coded OCDMA system is found to be better than the uncoded OCDMA system. Trellis coded OCDMA can be used in systems where decoding time has to be kept low, bandwidth is limited and high reliability is not a crucial factor as in local area networks. Also the system hardware is less complex in comparison to the Turbo coded system. Trellis coded OCDMA system can be used without significant modification of the existing chipsets. Turbo-coded OCDMA can however be employed in systems where high reliability is needed and bandwidth is not a limiting factor.

Keywords: avalanche photodiode, optical code division multipleaccess, optical multiple access interference, Trellis codedmodulation, Turbo code

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1878
9049 Bond Strength in Thermally Sprayed Gas Turbine Shafts

Authors: M.Jalali Azizpour, S.Norouzi, D.Sajedipour, H.Mohammadi majd, S.A.Hosseini, H.Talebi, A.Ghamari

Abstract:

In this paper, the bond strength of thermal spray coatings in high speed shafts has been studied. The metallurgical and mechanical studies has been made on the coated samples and shaft using optical microscopy, scanning electron microscopy (SEM).

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1771
9048 Modeling and Performance Evaluation of Three Power Generation and Refrigeration Energy Recovery Systems from Thermal Loss of a Diesel Engine in Different Driving Conditions

Authors: H. Golchoobian, M. H. Taheri, S. Saedodin, A. Sarafraz

Abstract:

This paper investigates the possibility of using three systems of organic Rankine auxiliary power generation, ejector refrigeration and absorption to recover energy from a diesel car. The analysis is done for both urban and suburban driving modes that vary from 60 to 120 km/h. Various refrigerants have also been used for organic Rankine and Ejector refrigeration cycles. The capacity was evaluated by Organic Rankine Cycle (ORC) system in both urban and suburban conditions for cyclopentane and ammonia as refrigerants. Also, for these two driving plans, produced cooling by absorption refrigeration system under variable ambient temperature conditions and in ejector refrigeration system for R123, R134a and R141b refrigerants were investigated.

Keywords: Absorption system, diesel engine, ejector refrigeration, energy recovery, organic Rankine cycle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 668
9047 Experimental Characterization of the Thermal Behavior of a Sawdust Mortar

Authors: F. Taouche-Kheloui, O. Fedaoui-Akmoussi, K. Ait tahar, Li. Alex

Abstract:

Currently, the reduction of energy consumption, through the use of abundant and recyclable natural materials, for better thermal insulation represents an important area of research. To this end, the use of bio-sourced materials has been identified as one of the green sectors with a very high economic development potential for the future. Because of its role in reducing the consumption of fossil-based raw materials, it contributes significantly to the storage of atmospheric carbon, limits greenhouse gas emissions and creates new economic opportunities. This study constitutes a contribution to the elaboration and the experimental characterization of the thermal behavior of a sawdust-reduced mortar matrix. We have taken into account the influence of the size of the grain fibers of sawdust, hence the use of three different ranges and also different percentage in the different confections. The intended practical application consists of producing a light weight compound at a lower cost to ensure a better thermal and acoustic behavior compared to that existing in the field, in addition to the desired resistances. Improving energy performance, while reducing greenhouse gas emissions from the building sector, is amongst the objectives to be achieved. The results are very encouraging and highlight the value of the proposed design of organic-source mortar panels which have specific mechanical properties acceptable for their use, low densities, lower cost of manufacture and labor, and above all a positive impact on the environment.

Keywords: Mortar, sawdust waste, thermal, experimental, analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 566
9046 Earth Station Neural Network Control Methodology and Simulation

Authors: Hanaa T. El-Madany, Faten H. Fahmy, Ninet M. A. El-Rahman, Hassen T. Dorrah

Abstract:

Renewable energy resources are inexhaustible, clean as compared with conventional resources. Also, it is used to supply regions with no grid, no telephone lines, and often with difficult accessibility by common transport. Satellite earth stations which located in remote areas are the most important application of renewable energy. Neural control is a branch of the general field of intelligent control, which is based on the concept of artificial intelligence. This paper presents the mathematical modeling of satellite earth station power system which is required for simulating the system.Aswan is selected to be the site under consideration because it is a rich region with solar energy. The complete power system is simulated using MATLAB–SIMULINK.An artificial neural network (ANN) based model has been developed for the optimum operation of earth station power system. An ANN is trained using a back propagation with Levenberg–Marquardt algorithm. The best validation performance is obtained for minimum mean square error. The regression between the network output and the corresponding target is equal to 96% which means a high accuracy. Neural network controller architecture gives satisfactory results with small number of neurons, hence better in terms of memory and time are required for NNC implementation. The results indicate that the proposed control unit using ANN can be successfully used for controlling the satellite earth station power system.

Keywords: Satellite, neural network, MATLAB, power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
9045 A Thermodynamic Solution for the Static and Dynamic Characteristics of a Two-Lobe Journal Bearing

Authors: B. Chetti, W. A. Crosby

Abstract:

The work described in this paper is an investigation of the static and dynamic characteristics of two-lobe journal bearings taking into consideration the thermal effects. A thermo-hydrodynamic solution of a finite two-lobe journal bearing is performed by solving the generalized form Reynolds equation with the energy equation, taking into consideration viscosity variation across the film thickness. The static and dynamic characteristics were numerically obtained. The results are evaluated for different values of viscosity-temperature coefficient and Peclet number. The results show that considering the thermal effects in the solution of the two-lobe journal bearing has a marked on the study of its stability.

Keywords: Two-lobe bearing, thermal effect, static and dynamic characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1698
9044 Intelligent Automatic Generation Control of Two Area Interconnected Power System using Hybrid Neuro Fuzzy Controller

Authors: Sathans, A. Swarup

Abstract:

This paper presents the development and application of an adaptive neuro fuzzy inference system (ANFIS) based intelligent hybrid neuro fuzzy controller for automatic generation control (AGC) of two-area interconnected thermal power system with reheat non linearity. The dynamic response of the system has been studied for 1% step load perturbation in area-1. The performance of the proposed neuro fuzzy controller is compared against conventional proportional-integral (PI) controller, state feedback linear quadratic regulator (LQR) controller and fuzzy gain scheduled proportionalintegral (FGSPI) controller. Comparative analysis demonstrates that the proposed intelligent neuro fuzzy controller is the most effective of all in improving the transients of frequency and tie-line power deviations against small step load disturbances. Simulations have been performed using Matlab®.

Keywords: Automatic generation control, ANFIS, LQR, Hybrid neuro fuzzy controller

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
9043 Thermodynamic Evaluation of Coupling APR1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human population has placed increased demands on water supplies and spurred a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP, an IAEA sponsored program. DE-TOP has capabilities to analyze power generation systems coupled to desalination plants through various steam extraction positions, taking into consideration the isolation loop between the nuclear and the thermal desalination facilities (i.e., for radiological isolation).

Keywords: APR1400, Cogeneration, Desalination, DE-TOP, IAEA, MED, MED-TVC, MSF, RO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
9042 Application of HVOF Thermal Spraying inHigh Speed Gas Compressor Shafts

Authors: M.Jalali Azizpour, S.norouzi, H.mohammadi majd, H.Talebi, A.Ghamari

Abstract:

In this paper, the application of thermal spray coatings in high speed shafts by a revolution up to 23000 RPM has been studied. Gas compressor shafts are worn in contact zone with journal therefore will be undersized. Wear mechanisms of compressor shaft were identified. The predominant wear mechanism is abrasion wear. The worn surface was coated by hard WC-Co cermets using high velocity oxy fuel (HVOF) after preparation. The shafts were in satisfactory service in 8000h period. The metallurgical and Tribological studies has been made on the worn and coated shaft using optical microscopy, scanning electron microscopy (SEM) and X-ray diffraction.

Keywords: Thermal spray, Residual stress, Wear mechanism, HVOF, Gas compressor shafts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2452
9041 Design and Microfabrication of a High Throughput Thermal Cycling Platform with Various Annealing Temperatures

Authors: Sin J. Chen, Jyh J. Chen

Abstract:

This study describes a micro device integrated with multi-chamber for polymerase chain reaction (PCR) with different annealing temperatures. The device consists of the reaction polydimethylsiloxane (PDMS) chip, a cover glass chip, and is equipped with cartridge heaters, fans, and thermocouples for temperature control. In this prototype, commercial software is utilized to determine the geometric and operational parameters those are responsible for creating the denaturation, annealing, and extension temperatures within the chip. Two cartridge heaters are placed at two sides of the chip and maintained at two different temperatures to achieve a thermal gradient on the chip during the annealing step. The temperatures on the chip surface are measured via an infrared imager. Some thermocouples inserted into the reaction chambers are used to obtain the transient temperature profiles of the reaction chambers during several thermal cycles. The experimental temperatures compared to the simulated results show a similar trend. This work should be interesting to persons involved in the high-temperature based reactions and genomics or cell analysis.

Keywords: Polymerase chain reaction, thermal cycles, temperature gradient, micro-fabrication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
9040 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed. F. Zobaa

Abstract:

Since the output characteristics of photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum power point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a maximum power point tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), andParticle Swarm Optimization (PSO) algorithmfor (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC cuk converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: Incremental Conductance (IncCond) Method, Perturb and Observe (P&O) Method, Photovoltaic Systems (PV) and Practical Swarm Optimization Algorithm (PSO).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5678
9039 Evaluation of Heterogeneity of Paint Coating on Metal Substrate Using Laser Infrared Thermography and Eddy Current

Authors: S. Mezghani, E. Perrin, J. L Bodnar, J. Marthe, B. Cauwe, V. Vrabie

Abstract:

Non contact evaluation of the thickness of paint coatings can be attempted by different destructive and nondestructive methods such as cross-section microscopy, gravimetric mass measurement, magnetic gauges, Eddy current, ultrasound or terahertz. Infrared thermography is a nondestructive and non-invasive method that can be envisaged as a useful tool to measure the surface thickness variations by analyzing the temperature response. In this paper, the thermal quadrupole method for two layered samples heated up with a pulsed excitation is firstly used. By analyzing the thermal responses as a function of thermal properties and thicknesses of both layers, optimal parameters for the excitation source can be identified. Simulations show that a pulsed excitation with duration of ten milliseconds allows obtaining a substrate-independent thermal response. Based on this result, an experimental setup consisting of a near-infrared laser diode and an Infrared camera was next used to evaluate the variation of paint coating thickness between 60 μm and 130 μm on two samples. Results show that the parameters extracted for thermal images are correlated with the estimated thicknesses by the Eddy current methods. The laser pulsed thermography is thus an interesting alternative nondestructive method that can be moreover used for nonconductive substrates.

Keywords: Nondestructive, paint coating, thickness, infrared thermography, laser, heterogeneity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
9038 Injection Molding of Inconel718 Parts for Aerospace Application Using Novel Binder System Based On Palm Oil Derivatives

Authors: R. Ibrahim, M. Azmirruddin, M. Jabir, N. Johari, M. Muhamad, A. R. A. Talib

Abstract:

Inconel718 has been widely used as a super alloy in aerospace application due to the high strength at elevated temperatures, satisfactory oxidation resistance and heat corrosion resistance. In this study, the Inconel718 has been fabricated using high technology of Metal Injection Molding (MIM) process due to the cost effective technique for producing small, complex and precision parts in high volume compared with conventional method through machining. Through MIM, the binder system is one of the most important criteria in order to successfully fabricate the Inconel718. Even though, the binder system is a temporary, but failure in the selection and removal of the binder system will affect on the final properties of the sintered parts. Therefore, the binder system based on palm oil derivative which is palm stearin has been formulated and developed to replace the conventional binder system. The rheological studies of the mixture between the powder and binders system have been determined properly in order to be successful during injection into injection molding machine. After molding, the binder holds the particles in place. The binder system has to be removed completely through debinding step. During debinding step, solvent debinding and thermal pyrolysis has been used to remove completely of the binder system. The debound part is then sintered to give the required physical and mechanical properties. The results show that the properties of the final sintered parts fulfill the Standard Metal Powder Industries Federation (MPIF) 35 for MIM parts.

Keywords: Binder system, rheological study, metal injection molding, debinding and sintered parts.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2693
9037 Thermal Stability of a Vertical SOI-Based Capacitorless One-Transistor DRAM with Trench-Body Structure

Authors: Po-Hsieh Lin, Jyi-Tsong Lin

Abstract:

A vertical SOI-based MOSFET with trench body structure operated as 1T DRAM cell at various temperatures has been studied and investigated. Different operation temperatures are assigned for the device for its performance comparison, thus the thermal stability is carefully evaluated for the future memory device applications. Based on the simulation, the vertical SOI-based MOSFET with trench body structure demonstrates the electrical characteristics properly and possess conspicuous kink effect at various operation temperatures. Transient characteristics were also performed to prove that its programming window values and retention time behaviors are acceptable when the new 1T DRAM cell is operated at high operation temperature.

Keywords: SOI, 1T DRAM, thermal stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1544
9036 Judges System for Classifiers Specialization

Authors: Abdel Rodríguez, Isis Bonet, Ricardo Grau, María M. García

Abstract:

In this paper we designed and implemented a new ensemble of classifiers based on a sequence of classifiers which were specialized in regions of the training dataset where errors of its trained homologous are concentrated. In order to separate this regions, and to determine the aptitude of each classifier to properly respond to a new case, it was used another set of classifiers built hierarchically. We explored a selection based variant to combine the base classifiers. We validated this model with different base classifiers using 37 training datasets. It was carried out a statistical comparison of these models with the well known Bagging and Boosting, obtaining significantly superior results with the hierarchical ensemble using Multilayer Perceptron as base classifier. Therefore, we demonstrated the efficacy of the proposed ensemble, as well as its applicability to general problems.

Keywords: classifiers, delegation, ensemble

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1281
9035 Adhesion Strength Evaluation Methods in Thermally Sprayed Coatings

Authors: M.Jalali Azizpour, H.Mohammadi majd, Milad Jalali, H.Fasihi

Abstract:

The techniques for estimating the adhesive and cohesive strength in high velocity oxy fuel (HVOF) thermal spray coatings have been discussed and compared. The development trend and the last investigation have been studied. We will focus on benefits and limitations of these methods in different process and materials.

Keywords: Adhesion, Bonding strength, Cohesion, HVOF Thermal spray

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3113
9034 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
9033 Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

Authors: P. K. Singhal, R. Naresh, V. Sharma

Abstract:

This paper presents the three optimization models, namely New Binary Artificial Bee Colony (NBABC) algorithm, NBABC with Local Search (NBABC-LS), and NBABC with Genetic Crossover (NBABC-GC) for solving the Wind-Thermal Unit Commitment (WTUC) problem. The uncertain nature of the wind power is incorporated using the Weibull probability density function, which is used to calculate the overestimation and underestimation costs associated with the wind power fluctuation. The NBABC algorithm utilizes a mechanism based on the dissimilarity measure between binary strings for generating the binary solutions in WTUC problem. In NBABC algorithm, an intelligent scout bee phase is proposed that replaces the abandoned solution with the global best solution. The local search operator exploits the neighboring region of the current solutions, whereas the integration of genetic crossover with the NBABC algorithm increases the diversity in the search space and thus avoids the problem of local trappings encountered with the NBABC algorithm. These models are then used to decide the units on/off status, whereas the lambda iteration method is used to dispatch the hourly load demand among the committed units. The effectiveness of the proposed models is validated on an IEEE 10-unit thermal system combined with a wind farm over the planning period of 24 hours.

Keywords: Artificial bee colony algorithm, economic dispatch, unit commitment, wind power.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1159
9032 Performance Assessment of Wet-Compression Gas Turbine Cycle with Turbine Blade Cooling

Authors: Kyoung Hoon Kim

Abstract:

Turbine blade cooling is considered as the most effective way of maintaining high operating temperature making use of the available materials, and turbine systems with wet compression have a potential for future power generation because of high efficiency and high specific power with a relatively low cost. In this paper performance analysis of wet-compression gas turbine cycle with turbine blade cooling is carried out. The wet compression process is analytically modeled based on non-equilibrium droplet evaporation. Special attention is paid for the effects of pressure ratio and water injection ratio on the important system variables such as ratio of coolant fluid flow, fuel consumption, thermal efficiency and specific power. Parametric studies show that wet compression leads to insignificant improvement in thermal efficiency but significant enhancement of specific power in gas turbine systems with turbine blade cooling.

Keywords: Water injection, wet compression, gas turbine, turbine blade cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3382