**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**30737

##### Comparative Performance of Artificial Bee Colony Based Algorithms for Wind-Thermal Unit Commitment

**Authors:**
R. Naresh,
P. K. Singhal,
V. Sharma

**Abstract:**

**Keywords:**
wind power,
economic dispatch,
Artificial Bee Colony Algorithm,
unit commitment

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1126285

**References:**

[1] R. Billinton, B. Karki, R. Karki, and G. Ramakrishna, “Unit commitment risk analysis of wind integrated power systems,” IEEE Trans. Power Syst., vol. 24, no. 2, pp. 930-939, 2009.

[2] X. Sun and C. Fang, “Interval mixed-integer programming for daily unit commitment and dispatch incorporating wind power,” in Proc. IEEE Int. Conf. on Power System Technology (POWERCON), pp. 1-6, 2010.

[3] J. J. Hargreaves and B. F. Hobbs, “Commitment and dispatch with uncertain wind generation by dynamic programming,” IEEE Trans. on Sustain. Energy, vol. 3, no. 4, pp. 724- 734, 2012.

[4] E. Delarue, D. Cattrysse, and W. D’haeseleer, “Enhanced priority list unit commitment method for power systems with a high share of renewable,” Electr. Power Syst. Res., vol. 105, pp. 115-123, 2013.

[5] G. J. Osorio, J. M. L. Rojas, J. C. O. Matias, and J. P. S. Catalão, “A new scenario generation-based method to solve the unit commitment problem with high penetration of renewable energies,” Int. J. Electric Power Energy Syst., vol.64, pp. 1063–1072, 2015.

[6] C. L. Chen, “Simulated annealing-based optimal wind-thermal coordination scheduling,” IET Genr. Transm. Distrib., vol. 1, no. 3, pp. 447-455, 2007.

[7] H. Siahkali and M. Vakilian, “Electricity generation scheduling with large-scale wind farms using particle swarm optimization,” Electr. Power Syst. Res., vol. 79, pp. 826–836, 2009.

[8] H. Siahkali and M. Vakilian, “Fuzzy generation scheduling for a generation company (GenCo) with large scale wind farms,” Energy Convers. Manag., vol. 51, pp. 1947-1957, 2010.

[9] Q. Wang, Y. Guan, and J. Wang, “A chance-constrained two-stagestochasticprogram for unit commitment withuncertain wind poweroutput,” IEEE Trans. Power Syst., vol. 27, no. 1, pp. 206-215, Feb.2012.

[10] C. Peng, H. Sun, J. Guo, and G. Liu, “Dynamic economic dispatch for wind-thermal power system using a novel bi-population chaotic differential evolution algorithm,” Int. J. Electric Power Energy Syst., vol.42, pp. 119-126, 2012.

[11] B. Ji, X. Yuan, Z. Chen, and H. Tian, “Improved gravitational search algorithm for unit commitment considering uncertainty of wind power,” Energy, vol. 67, pp. 52-62, 2014.

[12] B. Ji, X. Yuan, X. Li, Y. Huang, and W. Li, “Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration,” Energy Convers. Manag., vol. 87, pp. 589–598, 2014.

[13] T. Niknam and H. R. Massrur, “Stochastic mid-term generation scheduling incorporated with wind power,” Int. J. Electric Power Energy Syst.,vol. 64, pp. 937–946, 2015.

[14] C. L. Chen, “Optimal wind–thermal generating unit commitment,” IEEE Trans. on Energy Convers., vol. 23, no. 1, pp. 273-280, 2008.

[15] B. Venkatesh, P. Yu, H. B. Gooi, and D. Choling, “Fuzzy MILP unit commitment incorporating wind generators,” IEEE Trans. Power Syst., vol. 23, no. 4, pp. 1738-1746, Nov. 2008.

[16] H. Siahkali and M. Vakilian, “Integrating large scale wind farms in fuzzy mid term unit commitment using PSO,” in Proc. 5thIEEE Int. Conf. on European Electricity Market (EEM 2008), pp. 1-6, 2008.

[17] B. Saravanan, S. Mishra, and D. Nag, “A solution to stochastic unit commitment problem for a wind-thermal system coordination,” Front. Energy, vol. 8, no. 2, pp. 192-200, 2014.

[18] Y. Zhang, F. Yao, H. H. C. Iu, T. Fernando, and H. Trinh, “Wind-thermal systems operation optimization considering emission problem,” Int. J Electric Power Energy Syst., vol. 65, pp. 238-245, 2015.

[19] M. R. Patel, Wind and Solar Power Systems: Design, Analysis, and Operation, 2nd ed. Boca Raton: CRC Press, 2006.

[20] D. Karaboga, and B. Basturk, “A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm,” J. Glob. Optim., vol. 39, pp. 459–471, 2007.

[21] M. H. Kashan, N. Nahavandi, and A. H. Kashan, “DisABC: A new artificial bee colony algorithm for binary optimization,” Appl. Soft Comput., vol. 12, pp. 342-352, 2012.

[22] A. G. Abro, and J. M. Saleh, “Intelligent scout-bee based artificial bee colony optimization algorithm,” in Proc. IEEE Int. Conf. Control System, Computing and Engineering, Nov. 2012, pp. 380-385.

[23] P. K. Singhal, R. Naresh, and V. Sharma, “A modified binary artificial bee colony algorithm for ramp rate constrained unit commitment problem,” Int. Trans. Electr. Energ. Syst., vol. 25, pp. 3472-3491, 2015.

[24] P. Jain, Wind Energy Engineering, New York, USA: Tata McGraw Hill, 2011.

[25] C. Carrillo, J. Cidras, E. D. Dorada, and A. F. O. Montano, “An approach to determine the Weibull parameters for wind energy analysis: the case of Galicia (Spain),” Energies, vol. 7, pp. 2676-2700, 2014.

[26] A. Altunkaynak, T. Erdik, I. Dabanli, and Z. Sen, “Theoretical derivation of wind power probability distribution function and applications,” Appl. Energy, vol. 92, pp. 809-814, 2012.

[27] T. P. Chang, “Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application,” Appl. Energy, vol. 88, pp. 272-282, 2011.

[28] U.S. Bureau of Reclamation, USA. http://www.usbr.gov.