WASET
	%0 Journal Article
	%A M. Gomaa Abdoelatef and  Robert M. Field and  Lee and  Yong-Kwan
	%D 2015
	%J International Journal of Chemical and Molecular Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 107, 2015
	%T Thermodynamic Evaluation of Coupling APR1400 with a Thermal Desalination Plant
	%U https://publications.waset.org/pdf/10002677
	%V 107
	%X Growing human population has placed increased
demands on water supplies and spurred a heightened interest in
desalination infrastructure. Key elements of the economics of
desalination projects are thermal and electrical inputs. With growing
concerns over use of fossil fuels to (indirectly) supply these inputs,
coupling of desalination with nuclear power production represents a
significant opportunity. Individually, nuclear and desalination
technologies have a long history and are relatively mature. For
desalination, Reverse Osmosis (RO) has the lowest energy inputs.
However, the economically driven output quality of the water
produced using RO, which uses only electrical inputs, is lower than the
output water quality from thermal desalination plants. Therefore,
modern desalination projects consider that RO should be coupled with
thermal desalination technologies (MSF, MED, or MED-TVC) with
attendant steam inputs to permit blending to produce various qualities
of water. A large nuclear facility is well positioned to dispatch large
quantities of both electrical and thermal power. This paper considers
the supply of thermal energy to a large desalination facility to examine
heat balance impact on the nuclear steam cycle. The APR1400 nuclear
plant is selected as prototypical from both a capacity and turbine cycle
heat balance perspective to examine steam supply and the impact on
electrical output. Extraction points and quantities of steam are
considered parametrically along with various types of thermal
desalination technologies to form the basis for further evaluations of
economically optimal approaches to the interface of nuclear power
production with desalination projects. In our study, the
thermodynamic evaluation will be executed by DE-TOP, an IAEA
sponsored program. DE-TOP has capabilities to analyze power
generation systems coupled to desalination plants through various
steam extraction positions, taking into consideration the isolation loop
between the nuclear and the thermal desalination facilities (i.e., for
radiological isolation).
	%P 1278 - 1286