Search results for: self-regulation model.
1309 Micromechanics of Stress Transfer across the Interface Fiber-Matrix Bonding
Authors: Fatiha Teklal, Bachir Kacimi, Arezki Djebbar
Abstract:
The study and application of composite materials are a truly interdisciplinary endeavor that has been enriched by contributions from chemistry, physics, materials science, mechanics and manufacturing engineering. The understanding of the interface (or interphase) in composites is the central point of this interdisciplinary effort. From the early development of composite materials of various nature, the optimization of the interface has been of major importance. Even more important, the ideas linking the properties of composites to the interface structure are still emerging. In our study, we need a direct characterization of the interface; the micromechanical tests we are addressing seem to meet this objective and we chose to use two complementary tests simultaneously. The microindentation test that can be applied to real composites and the drop test, preferred to the pull-out because of the theoretical possibility of studying systems with high adhesion (which is a priori the case with our systems). These two tests are complementary because of the principle of the model specimen used for both the first "compression indentation" and the second whose fiber is subjected to tensile stress called the drop test. Comparing the results obtained by the two methods can therefore be rewarding.Keywords: Interface, micromechanics, pull-out, composite, fiber, matrix.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6331308 Modeling the Effect of Scale Deposition on Heat Transfer in Desalination Multi-Effect Distillation Evaporators
Authors: K. Bourouni, M. Chacha, T. Jaber, A. Tchantchane
Abstract:
In Multi-Effect Distillation (MED) desalination evaporators, the scale deposit outside the tubes presents a barrier to heat transfers reducing the global heat transfer coefficient and causing a decrease in water production; hence a loss of efficiency and an increase in operating and maintenance costs. Scale removal (by acid cleaning) is the main maintenance operation and constitutes the major reason for periodic plant shutdowns. A better understanding of scale deposition mechanisms will lead to an accurate determination of the variation of scale thickness around the tubes and an improved accuracy of the overall heat transfer coefficient calculation. In this paper, a coupled heat transfer-calcium carbonate scale deposition model on a horizontal tube bundle is presented. The developed tool is used to determine precisely the heat transfer area leading to a significant cost reduction for a given water production capacity. Simulations are carried to investigate the influence of different parameters such as water salinity, temperature, etc. on the heat transfer.
Keywords: Multi-effect-evaporator, water desalination, scale deposition, heat transfer coefficient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5991307 Fast Intra Prediction Algorithm for H.264/AVC Based on Quadratic and Gradient Model
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC standard uses an intra prediction, 9 directional modes for 4x4 luma blocks and 8x8 luma blocks, 4 directional modes for 16x16 macroblock and 8x8 chroma blocks, respectively. It means that, for a macroblock, it has to perform 736 different RDO calculation before a best RDO modes is determined. With this Multiple intra-mode prediction, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standards, but computational complexity is increased significantly. This paper presents a fast intra prediction algorithm for H.264/AVC intra prediction based a characteristic of homogeneity information. In this study, the gradient prediction method used to predict the homogeneous area and the quadratic prediction function used to predict the nonhomogeneous area. Based on the correlation between the homogeneity and block size, the smaller block is predicted by gradient prediction and quadratic prediction, so the bigger block is predicted by gradient prediction. Experimental results are presented to show that the proposed method reduce the complexity by up to 76.07% maintaining the similar PSNR quality with about 1.94%bit rate increase in average.Keywords: Intra prediction, H.264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18981306 Planning of Road Infrastructure Financing: Computational Finance Viewpoint
Authors: Ornst J., Voracek J., Allouache A., Allouache D.
Abstract:
Lack of resources for road infrastructure financing is a problem that currently affects not only eastern European economies but also many other countries especially in relation to the impact of global financial crisis. In this context, we are talking about the socalled short-investment problem as a result of long-term lack of investment resources. Based on an analysis of road infrastructure financing in the Czech Republic this article points out at weaknesses of current system and proposes a long-term planning methodology supported by system approach. Within this methodology and using created system dynamic model the article predicts the development of short-investment problem in the Country and in reaction on the downward trend of certain sources the article presents various scenarios resulting from the change of the structure of financial sources. In the discussion the article focuses more closely on the possibility of introduction of tax on vehicles instead of taxes with declining revenue streams and estimates its approximate price in relation to reaching various solutions of short-investment in time.Keywords: Road financing, road infrastructure development, system dynamics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14011305 Using Mixtures of Waste Frying Oil and Pork Lard to Produce Biodiesel
Authors: Joana M. Dias, Conceição A. Ferraz, Manuel F. Almeida
Abstract:
Studying alternative raw materials for biodiesel production is of major importance. The use of mixtures with incorporation of wastes is an environmental friendly alternative and might reduce biodiesel production costs. The objective of the present work was: (i) to study biodiesel production using waste frying oil mixed with pork lard and (ii) to understand how mixture composition influences biodiesel quality. Biodiesel was produced by transesterification and quality was evaluated through determination of several parameters according to EN 14214. The weight fraction of lard in the mixture varied from 0 to 1 in 0.2 intervals. Biodiesel production yields varied from 81.7 to 88.0 (wt%), the lowest yields being the ones obtained using waste frying oil and lard alone as raw materials. The obtained products fulfilled most of the determined quality specifications according to European biodiesel quality standard EN 14214. Minimum purity (96.5 wt%) was closely obtained when waste frying oil was used alone and when 0.2% of lard was incorporated in the raw material (96.3 wt%); however, it ranged from 93.9 to 96.3 (wt%) being always close to the limit. From the evaluation of the influence of mixture composition in biodiesel quality, it was possible to establish a model to be used for predicting some parameters of biodiesel resulting from mixtures of waste frying oil with lard when different lard contents are used.
Keywords: Biodiesel, mixtures, transesterification, waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25531304 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis
Abstract:
In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43011303 Continuous Functions Modeling with Artificial Neural Network: An Improvement Technique to Feed the Input-Output Mapping
Authors: A. Belayadi, A. Mougari, L. Ait-Gougam, F. Mekideche-Chafa
Abstract:
The artificial neural network is one of the interesting techniques that have been advantageously used to deal with modeling problems. In this study, the computing with artificial neural network (CANN) is proposed. The model is applied to modulate the information processing of one-dimensional task. We aim to integrate a new method which is based on a new coding approach of generating the input-output mapping. The latter is based on increasing the neuron unit in the last layer. Accordingly, to show the efficiency of the approach under study, a comparison is made between the proposed method of generating the input-output set and the conventional method. The results illustrated that the increasing of the neuron units, in the last layer, allows to find the optimal network’s parameters that fit with the mapping data. Moreover, it permits to decrease the training time, during the computation process, which avoids the use of computers with high memory usage.
Keywords: Neural network computing, information processing, input-output mapping, training time, computers with high memory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13261302 Production Line Layout Planning Based on Complexity Measurement
Authors: Guoliang Fan, Aiping Li, Nan Xie, Liyun Xu, Xuemei Liu
Abstract:
Mass customization production increases the difficulty of the production line layout planning. The material distribution process for variety of parts is very complex, which greatly increases the cost of material handling and logistics. In response to this problem, this paper presents an approach of production line layout planning based on complexity measurement. Firstly, by analyzing the influencing factors of equipment layout, the complexity model of production line is established by using information entropy theory. Then, the cost of the part logistics is derived considering different variety of parts. Furthermore, the function of optimization including two objectives of the lowest cost, and the least configuration complexity is built. Finally, the validity of the function is verified in a case study. The results show that the proposed approach may find the layout scheme with the lowest logistics cost and the least complexity. Optimized production line layout planning can effectively improve production efficiency and equipment utilization with lowest cost and complexity.
Keywords: Production line, layout planning, complexity measurement, optimization, mass customization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10911301 Augmented Reality in Advertising and Brand Communication: An Experimental Study
Authors: O. Mauroner, L. Le, S. Best
Abstract:
Digital technologies offer many opportunities in the design and implementation of brand communication and advertising. Augmented reality (AR) is an innovative technology in marketing communication that focuses on the fact that virtual interaction with a product ad offers additional value to consumers. AR enables consumers to obtain (almost) real product experiences by the way of virtual information even before the purchase of a certain product. Aim of AR applications in relation with advertising is in-depth examination of product characteristics to enhance product knowledge as well as brand knowledge. Interactive design of advertising provides observers with an intense examination of a specific advertising message and therefore leads to better brand knowledge. The elaboration likelihood model and the central route to persuasion strongly support this argumentation. Nevertheless, AR in brand communication is still in an initial stage and therefore scientific findings about the impact of AR on information processing and brand attitude are rare. The aim of this paper is to empirically investigate the potential of AR applications in combination with traditional print advertising. To that effect an experimental design with different levels of interactivity is built to measure the impact of interactivity of an ad on different variables o advertising effectiveness.Keywords: Advertising effectiveness, augmented reality, brand communication, brand recall, interactivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 49271300 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms
Authors: Amir Hossein Daei Sorkhabi, Bita Khazini
Abstract:
In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.
Keywords: Automatic Carwash, Dimension, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68291299 Long Term Stability of an Experimental Insulated-Model Salinity-Gradient Solar Pond
Authors: N. W. K. Jayatissa, R. Attalage, Prabath Hewageegana, P. A. A. Perera, M. A. Punyasena
Abstract:
Per capita energy usage in any country is exponentially increasing with their development. As a result, the country’s dependence on the fossil fuels for energy generation is also increasing tremendously creating economic and environmental concerns. Tropical countries receive considerable amount of solar radiation throughout the year, use of solar energy with different energy storage and conversion methodologies is a viable solution to minimize the ever increasing demand for the depleting fossil fuels. Salinity gradient solar pond is one such solar energy application. This paper reports the characteristics and performance of a thermally insulated, experimental salinity-gradient solar pond, built at the premises of the University of Kelaniya, Sri Lanka. Particular stress is given to the behavior of the evolution of the three layer structure exist at the stable state of a salinity gradient solar pond over a long period of time, under different environmental conditions. The operational procedures required to maintain the long term thermal stability are also reported in this article.
Keywords: Salt-gradient, solar pond, solar radiation, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16101298 Identifying Factors Contributing to the Spread of Lyme Disease: A Regression Analysis of Virginia’s Data
Authors: Fatemeh Valizadeh Gamchi, Edward L. Boone
Abstract:
This research focuses on Lyme disease, a widespread infectious condition in the United States caused by the bacterium Borrelia burgdorferi sensu stricto. It is critical to identify environmental and economic elements that are contributing to the spread of the disease. This study examined data from Virginia to identify a subset of explanatory variables significant for Lyme disease case numbers. To identify relevant variables and avoid overfitting, linear poisson, and regularization regression methods such as ridge, lasso, and elastic net penalty were employed. Cross-validation was performed to acquire tuning parameters. The methods proposed can automatically identify relevant disease count covariates. The efficacy of the techniques was assessed using four criteria on three simulated datasets. Finally, using the Virginia Department of Health’s Lyme disease dataset, the study successfully identified key factors, and the results were consistent with previous studies.
Keywords: Lyme disease, Poisson generalized linear model, Ridge regression, Lasso Regression, elastic net regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351297 Virtual Assembly in a Semi-Immersive Environment
Authors: Emad S. Abouel Nasr, Abdulaziz M. El-Tamimi, Mustufa H. Abidi, Abdulrahman M. Al-Ahmari
Abstract:
Virtual Assembly (VA) is one of the key technologies in advanced manufacturing field. It is a promising application of virtual reality in design and manufacturing field. It has drawn much interest from industries and research institutes in the last two decades. This paper describes a process for integrating an interactive Virtual Reality-based assembly simulation of a digital mockup with the CAD/CAM infrastructure. The necessary hardware and software preconditions for the process are explained so that it can easily be adopted by non VR experts. The article outlines how assembly simulation can improve the CAD/CAM procedures and structures; how CAD model preparations have to be carried out and which virtual environment requirements have to be fulfilled. The issue of data transfer is also explained in the paper. The other challenges and requirements like anti-aliasing and collision detection have also been explained. Finally, a VA simulation has been carried out for a ball valve assembly and a car door assembly with the help of Vizard virtual reality toolkit in a semi-immersive environment and their performance analysis has been done on different workstations to evaluate the importance of graphical processing unit (GPU) in the field of VA.Keywords: Collision Detection, Graphical Processing Unit (GPU), Virtual Reality (VR), Virtual Assembly (VA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29141296 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine
Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour
Abstract:
Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.
Keywords: Intrusion detection system, decision tree, support vector machine, feature selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12451295 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner
Authors: Loke Kean Koay, Mani Maran Ratnam
Abstract:
A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of mirror was selected since it attains minimum stress level, while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.
Keywords: Computer-aided design, design optimization, torsional scanner.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19691294 Applying Systematic Literature Review and Delphi Methods to Explore Digital Transformation Key Success Factors
Authors: Ayman El-Garem, Riham Adel
Abstract:
Digital transformation is about identifying the necessary changes of the entire business model, rethinking how to transform the traditional operations into digital ones that can create better value to its customers. Efforts are common across industries, but they often fail due to a lack of understanding of the factors required to focus on and change to be able to embark in digital transformation successfully. Further research is required to bridge the knowledge gap between academia and industry to support companies starting their digital transformation journey. To date there is no consensus on digital transformation key success factors. Therefore, the aim of this paper is to identify the success factors in digital transformation journey, throughout conducting a systematic literature review of 134 peer-reviewed articles to get better insights regarding the research progress in this field. After completing the systematic literature review it will be followed by Delphi study to get experts consensus on the most significant factors affecting digital transformation implementation. The findings indicate that organizations undergoing digital transformation should focus mainly on (1) well managed digital transformation activities; (2) digital business strategy; (3) supportive culture; (4) top management support; (5) organizational change capabilities.
Keywords: Digital transformation, key success factors, literature review, Delphi study.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7441293 A Simulation Study into the Use of Polymer Based Materials for Core Exoskeleton Applications
Authors: Matthew Dickinson
Abstract:
A core/trunk exoskeleton design has been produced that is aimed to assist the raise to stand motion. A 3D model was produced to examine the use of additive manufacturing as a core method for producing structural components for the exoskeleton presented. The two materials that were modelled for this simulation work were Polylatic acid (PLA) and polyethylene terephthalate with carbon (PET-C), and the central spinal cord of the design being Nitrile rubber. The aim of this study was to examine the use of 3D printed materials as the main skeletal structure to support the core of a human when moving raising from a resting position. The objective in this work was to identify if the 3D printable materials could be offered as an equivalent alternative to conventional more expensive materials, thus allow for greater access for production for home maintenance. A maximum load of lift force was calculated, and this was incrementally reduced to study the effects on the material. The results showed a total number of 8 simulations were run to study the core in conditions with no muscular support through to 90% of operational support. The study presents work in the form of a core/trunk exoskeleton that presents 3D printing as a possible alternative to conventional manufacturing.
Keywords: 3D printing, Exo-Skeleton, PLA, PETC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4461292 Performance Improvement in the Bivariate Models by using Modified Marginal Variance of Noisy Observations for Image-Denoising Applications
Authors: R. Senthilkumar
Abstract:
Most simple nonlinear thresholding rules for wavelet- based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. This paper attempts to give a recipe for selecting one of the popular image-denoising algorithms based on VisuShrink, SureShrink, OracleShrink, BayesShrink and BiShrink and also this paper compares different Bivariate models used for image denoising applications. The first part of the paper compares different Shrinkage functions used for image-denoising. The second part of the paper compares different bivariate models and the third part of this paper uses the Bivariate model with modified marginal variance which is based on Laplacian assumption. This paper gives an experimental comparison on six 512x512 commonly used images, Lenna, Barbara, Goldhill, Clown, Boat and Stonehenge. The following noise powers 25dB,26dB, 27dB, 28dB and 29dB are added to the six standard images and the corresponding Peak Signal to Noise Ratio (PSNR) values are calculated for each noise level.Keywords: BiShrink, Image-Denoising, PSNR, Shrinkage function
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13521291 A General Segmentation Scheme for Contouring Kidney Region in Ultrasound Kidney Images using Improved Higher Order Spline Interpolation
Authors: K. Bommanna Raja, M.Madheswaran, K.Thyagarajah
Abstract:
A higher order spline interpolated contour obtained with up-sampling of homogenously distributed coordinates for segmentation of kidney region in different classes of ultrasound kidney images has been developed and presented in this paper. The performance of the proposed method is measured and compared with modified snake model contour, Markov random field contour and expert outlined contour. The validation of the method is made in correspondence with expert outlined contour using maximum coordinate distance, Hausdorff distance and mean radial distance metrics. The results obtained reveal that proposed scheme provides optimum contour that agrees well with expert outlined contour. Moreover this technique helps to preserve the pixels-of-interest which in specific defines the functional characteristic of kidney. This explores various possibilities in implementing computer-aided diagnosis system exclusively for US kidney images. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501290 Implementation of an Innovative Simplified Sliding Mode Observer-Based Robust Fault Detection in a Drum Boiler System
Authors: L. Khoshnevisan, H. R. Momeni, A. Ashraf-Modarres
Abstract:
One of the robust fault detection filter (RFDF) designing method is based on sliding-mode theory. The main purpose of our study is to introduce an innovative simplified reference residual model generator to formulate the RFDF as a sliding-mode observer without any manipulation package or transformation matrix, through which the generated residual signals can be evaluated. So the proposed design is more explicit and requires less design parameters in comparison with approaches requiring changing coordinates. To the best author's knowledge, this is the first time that the sliding mode technique is applied to detect actuator and sensor faults in a real boiler. The designing procedure is proposed in a drum boiler in Synvendska Kraft AB Plant in Malmo, Sweden as a multivariable and strongly coupled system. It is demonstrated that both sensor and actuator faults can robustly be detected. Also sensor faults can be diagnosed and isolated through this method.Keywords: Boiler, fault detection, robustness, simplified sliding-mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19461289 Modeling and Simulation of Acoustic Link Using Mackenize Propagation Speed Equation
Authors: Christhu Raj M. R., Rajeev Sukumaran
Abstract:
Underwater acoustic networks have attracted great attention in the last few years because of its numerous applications. High data rate can be achieved by efficiently modeling the physical layer in the network protocol stack. In Acoustic medium, propagation speed of the acoustic waves is dependent on many parameters such as temperature, salinity, density, and depth. Acoustic propagation speed cannot be modeled using standard empirical formulas such as Urick and Thorp descriptions. In this paper, we have modeled the acoustic channel using real time data of temperature, salinity, and speed of Bay of Bengal (Indian Coastal Region). We have modeled the acoustic channel by using Mackenzie speed equation and real time data obtained from National Institute of Oceanography and Technology. It is found that acoustic propagation speed varies between 1503 m/s to 1544 m/s as temperature and depth differs. The simulation results show that temperature, salinity, depth plays major role in acoustic propagation and data rate increases with appropriate data sets substituted in the simulated model.Keywords: Underwater Acoustics, Mackenzie Speed Equation, Temperature, Salinity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22051288 Finite Element Simulation of Multi-Stage Deep Drawing Processes and Comparison with Experimental Results
Authors: A. Pourkamali Anaraki, M. Shahabizadeh, B. Babaee
Abstract:
The plastic forming process of sheet plate takes an important place in forming metals. The traditional techniques of tool design for sheet forming operations used in industry are experimental and expensive methods. Prediction of the forming results, determination of the punching force, blank holder forces and the thickness distribution of the sheet metal will decrease the production cost and time of the material to be formed. In this paper, multi-stage deep drawing simulation of an Industrial Part has been presented with finite element method. The entire production steps with additional operations such as intermediate annealing and springback has been simulated by ABAQUS software under axisymmetric conditions. The simulation results such as sheet thickness distribution, Punch force and residual stresses have been extracted in any stages and sheet thickness distribution was compared with experimental results. It was found through comparison of results, the FE model have proven to be in close agreement with those of experiment.Keywords: Deep drawing, Finite element method, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50851287 Protection of Cultural Heritage against the Effects of Climate Change Using Autonomous Aerial Systems Combined with Automated Decision Support
Authors: Artur Krukowski, Emmanouela Vogiatzaki
Abstract:
The article presents an ongoing work in research projects such as SCAN4RECO or ARCH, both funded by the European Commission under Horizon 2020 program. The former one concerns multimodal and multispectral scanning of Cultural Heritage assets for their digitization and conservation via spatiotemporal reconstruction and 3D printing, while the latter one aims to better preserve areas of cultural heritage from hazards and risks. It co-creates tools that would help pilot cities to save cultural heritage from the effects of climate change. It develops a disaster risk management framework for assessing and improving the resilience of historic areas to climate change and natural hazards. Tools and methodologies are designed for local authorities and practitioners, urban population, as well as national and international expert communities, aiding authorities in knowledge-aware decision making. In this article we focus on 3D modelling of object geometry using primarily photogrammetric methods to achieve very high model accuracy using consumer types of devices, attractive both to professions and hobbyists alike.
Keywords: 3D modeling, UAS, cultural heritage, preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7141286 Fuzzy EOQ Models for Deteriorating Items with Stock Dependent Demand and Non-Linear Holding Costs
Authors: G. C. Mahata, A. Goswami
Abstract:
This paper deals with infinite time horizon fuzzy Economic Order Quantity (EOQ) models for deteriorating items with stock dependent demand rate and nonlinear holding costs by taking deterioration rate θ0 as a triangular fuzzy number (θ0 −δ 1, θ0, θ0 +δ 2), where 1 2 0 0 <δ ,δ <θ are fixed real numbers. The traditional parameters such as unit cost and ordering cost have been kept constant but holding cost is considered to vary. Two possibilities of variations in the holding cost function namely, a non-linear function of the length of time for which the item is held in stock and a non-linear function of the amount of on-hand inventory have been used in the models. The approximate optimal solution for the fuzzy cost functions in both these cases have been obtained and the effect of non-linearity in holding costs is studied with the help of a numerical example.
Keywords: Inventory Model, Deterioration, Holding Cost, Fuzzy Total Cost, Extension Principle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18171285 Jobs Scheduling and Worker Assignment Problem to Minimize Makespan using Ant Colony Optimization Metaheuristic
Authors: Mian Tahir Aftab, Muhammad Umer, Riaz Ahmad
Abstract:
This article proposes an Ant Colony Optimization (ACO) metaheuristic to minimize total makespan for scheduling a set of jobs and assign workers for uniformly related parallel machines. An algorithm based on ACO has been developed and coded on a computer program Matlab®, to solve this problem. The paper explains various steps to apply Ant Colony approach to the problem of minimizing makespan for the worker assignment & jobs scheduling problem in a parallel machine model and is aimed at evaluating the strength of ACO as compared to other conventional approaches. One data set containing 100 problems (12 Jobs, 03 machines and 10 workers) which is available on internet, has been taken and solved through this ACO algorithm. The results of our ACO based algorithm has shown drastically improved results, especially, in terms of negligible computational effort of CPU, to reach the optimal solution. In our case, the time taken to solve all 100 problems is even lesser than the average time taken to solve one problem in the data set by other conventional approaches like GA algorithm and SPT-A/LMC heuristics.Keywords: Ant Colony Optimization (ACO), Genetic algorithms (GA), Makespan, SPT-A/LMC heuristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34771284 Predicting Global Solar Radiation Using Recurrent Neural Networks and Climatological Parameters
Authors: Rami El-Hajj Mohamad, Mahmoud Skafi, Ali Massoud Haidar
Abstract:
Several meteorological parameters were used for the prediction of monthly average daily global solar radiation on horizontal using recurrent neural networks (RNNs). Climatological data and measures, mainly air temperature, humidity, sunshine duration, and wind speed between 1995 and 2007 were used to design and validate a feed forward and recurrent neural network based prediction systems. In this paper we present our reference system based on a feed-forward multilayer perceptron (MLP) as well as the proposed approach based on an RNN model. The obtained results were promising and comparable to those obtained by other existing empirical and neural models. The experimental results showed the advantage of RNNs over simple MLPs when we deal with time series solar radiation predictions based on daily climatological data.
Keywords: Recurrent Neural Networks, Global Solar Radiation, Multi-layer perceptron, gradient, Root Mean Square Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25671283 Study of EEGs from Somatosensory Cortex and Alzheimer's Disease Sources
Authors: Md R. Bashar, Yan Li, Peng Wen
Abstract:
This study is to investigate the electroencephalogram (EEG) differences generated from a normal and Alzheimer-s disease (AD) sources. We also investigate the effects of brain tissue distortions due to AD on EEG. We develop a realistic head model from T1 weighted magnetic resonance imaging (MRI) using finite element method (FEM) for normal source (somatosensory cortex (SC) in parietal lobe) and AD sources (right amygdala (RA) and left amygdala (LA) in medial temporal lobe). Then, we compare the AD sourced EEGs to the SC sourced EEG for studying the nature of potential changes due to sources and 5% to 20% brain tissue distortions. We find an average of 0.15 magnification errors produced by AD sourced EEGs. Different brain tissue distortion models also generate the maximum 0.07 magnification. EEGs obtained from AD sources and different brain tissue distortion levels vary scalp potentials from normal source, and the electrodes residing in parietal and temporal lobes are more sensitive than other electrodes for AD sourced EEG.
Keywords: Alzheimer's disease (AD), brain tissue distortion, electroencephalogram, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19261282 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization
Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson
Abstract:
A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.
Keywords: FCCU modeling, optimization, oxy-combustion post-combustion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9291281 Preoperative to Intraoperative Space Registration for Management of Head Injuries
Authors: M. Gooroochurn, M. Ovinis, D. Kerr, K. Bouazza-Marouf, M. Vloeberghs
Abstract:
A registration framework for image-guided robotic surgery is proposed for three emergency neurosurgical procedures, namely Intracranial Pressure (ICP) Monitoring, External Ventricular Drainage (EVD) and evacuation of a Chronic Subdural Haematoma (CSDH). The registration paradigm uses CT and white light as modalities. This paper presents two simulation studies for a preliminary evaluation of the registration protocol: (1) The loci of the Target Registration Error (TRE) in the patient-s axial, coronal and sagittal views were simulated based on a Fiducial Localisation Error (FLE) of 5 mm and (2) Simulation of the actual framework using projected views from a surface rendered CT model to represent white light images of the patient. Craniofacial features were employed as the registration basis to map the CT space onto the simulated intraoperative space. Photogrammetry experiments on an artificial skull were also performed to benchmark the results obtained from the second simulation. The results of both simulations show that the proposed protocol can provide a 5mm accuracy for these neurosurgical procedures.Keywords: Image-guided Surgery, Multimodality Registration, Photogrammetry, Preoperative to Intraoperative Registration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15371280 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: Integral differential equations, American options, jump–diffusion model, rational approximation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 568