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Abstract—This research focuses on Lyme disease, a widespread
infectious condition in the United States caused by the bacterium
Borrelia burgdorferi sensu stricto. It is critical to identify
environmental and economic elements that are contributing to the
spread of the disease. This study examined data from Virginia to
identify a subset of explanatory variables significant for Lyme disease
case numbers. To identify relevant variables and avoid overfitting,
linear poisson, and regularization regression methods such as ridge,
lasso, and elastic net penalty were employed. Cross-validation was
performed to acquire tuning parameters. The methods proposed can
automatically identify relevant disease count covariates. The efficacy
of the techniques was assessed using four criteria on three simulated
datasets. Finally, using the Virginia Department of Health’s Lyme
disease dataset, the study successfully identified key factors, and the
results were consistent with previous studies.

Keywords—Lyme disease, Poisson generalized linear model, Ridge
regression, Lasso Regression, elastic net regression.

I. INTRODUCTION

LYME disease is one of the most often reported

vector-borne diseases in the US. Since it was first

identified in 1975 in the town of Old Lyme, Connecticut,

the illness has been referred to as Lyme disease. Lyme

disease, which is carried by the blacklegged tick (Ixodes
scapularis) in the eastern United States and is caused by

the bacterium Borrelia burgdorferi, is the most common

vector-borne illness in North America [1]. Incidence of Lyme

disease grew nationally between 1992 and 2002, although the

total number of confirmed cases has subsequently remained

mostly constant [1]. Recently, Lyme disease has become more

common in some areas; in Virginia, the number of verified

cases nearly doubled between 2006 and 2007 [1]. A 1990

study on Lyme disease cases in Virginia found that while

the illness was not common in the early 1980s, it seemed

to have increased in incidence and geographic distribution

by the late 1980s, which led researchers to conclude that

the condition was spreading south [2]. Virginia is therefore

a great location to study the illness’s mechanism and discover

the essential factors that contribute to the formation of Lyme

disease. The bacteria is spread to humans through the bites

of Ixodid species ticks. Many people do not realize they have

been bitten since blacklegged tick nymphs are tiny, difficult
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to notice, and do not cause any itching or irritation. Early

signs of Lyme disease include a rash, fever, headaches, and

fatigue. In those who are not treated when the disease is still in

its early stages, severe and persistent symptoms may appear.

Memory issues, shooting pains, numbness in the hands or

feet, and arthritis in the main joints are some of the enduring

symptoms of this disease. According to Maes et al. [3], the

disease’s anticipated treatment costs impose a major burden

on the public’s health. Therefore, research on the origin of

Lyme disease is important for public health in general. Tick

abundance, host species populations and infection rates, human

population patterns, awareness, and behavior, habitat, climate,

and other variables all have an impact on the spread of Lyme

disease. Understanding the long-term effects of environmental

and social factors that may play a role in the development of

lyme disease is possible via research on the disease.

The major goal of this study is to determine a subset of

explanatory variables that are important for Lyme disease case

numbers in northern and western Virginia. Bivariate analysis

and other straightforward techniques have been utilized in

earlier studies to find important factors [4]–[6].

We opted to focus on Virginia’s Northern Piedmont, Blue

Ridge, Ridge and Valley, and Central Appalachian regions for

our study. These regions are crucial for the research of Lyme

disease because they are home to a diversity of tick species,

habitats, deer, and potentially at risk individuals. In order to

identify which environmental factors in northern and western

Virginia were most strongly associated with Lyme disease, we

employed Poisson generalized linear model, Ridge regression,

lasso regression, and Elastic net penalty.

II. METHODS

There are experiments having counts as their potential

outcomes in many real-world issues in several fields, including

engineering, medicine, biology, economics, and the sciences.

The frequency of an event occurring over a certain period of

time or location might be the target variable in any of these

areas. Examples are number of failures, number of errors, etc.

Here, we are looking to determine the relationship between a

count response variable and the regressors. Poisson model is

the best linear model to model count or rate data [7]. In this

model, the response variable y is assumed to have a Poisson

distribution.

Poisson generalized linear models (GLMs) are a form

of regression model for modeling count data. They are
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a broader form of Poisson regression, which implies the

response variable has a Poisson distribution. Poisson GLMs

may simulate a broader range of count data, such as under- or

over-dispersed counts, zero-inflated or zero-truncated counts,

and correlated counts. Other factors, or covariates, that may

impact the count outcome can also be included [7]–[11].

A. Regularized Regression

The compexity of a model is defined by the number of its

parameters and their values. More parameters increases the

risk of overfitting. Overfitting occurs when the estimation is a

good fit for the particular dataset and may fail to fit another

dataset or to predict future observation. Regulization is a way

to avoid overfitting by constraining the coefficient estimation

to zero. The size of the coefficient and the error term are

penalized. Some of the simple approaches to reduce model

comlexity and avoid overfitting are to add a Ridge, Lasso or

Elastic Net penalty to the model [12], [13].

Ridge regression addresses overfitting by adding a penalty

term to the objective function of the regression model, which

shrinks the coefficients of the predictors towards zero while

still allowing all variables to contribute to the model. The

penalty term is proportional to the square of the magnitude of

the coefficients, and it can be controlled by a hyperparameter

called lambda or alpha [14].

Poisson ridge regression is a type of ridge regression

that is specifically designed for count data. It assumes

that the response variable follows a Poisson distribution.

The goal of Poisson ridge regression is to find a set of

coefficients that minimizes the sum of squared errors while

controlling for overfitting [15]. Also it tries to solve problems

caused by multicollinearity due to a linear association among

regressors (explanatory variables) [16], [10]. Multicollinearity

may present some issues in the regression model such as

having unstable coefficients, large variance, prediction can be

very poor, poor power of tests and yet the fit of the regression

model may be good. Ridge regression is a biased estimation

technique that tries to reduce the effect of the collinearity by

obtaining a decrease in variance and an increase in the stability

of the regression coefficients [15].

Lasso regression stand for least absolute shrinkage and

selection operator introduced by Tibshirani [17] is a type of

regression analysis that is used to both prevent overfitting and

select variables. Lasso regression imposes the L1-norm on the

regression coefficient which means the sum of the absolute

value of the coefficients is restricted. Lasso regression adds

a penalty term to the objective function of the regression

model that shrinks the coefficients of the variables that are

not important, effectively performing variable selection and

creating a more parsimonious model. The penalty term is

proportional to the absolute value of the coefficients, and it

can set some of them exactly to zero. Lasso regression is

particularly useful when the number of predictors is large

and some of them may be irrelevant or redundant [13], [18].

Poisson lasso regression is a type of Lasso regression analysis

and is particularly useful when dealing with count data,

which is often more prone to overfitting than continuous data.

Poisson lasso regression effectively controls overfitting by

selecting only the most significant predictors, which provides

a more interpretable model with better predictive performance

[18]–[24].

Poisson elastic net regression is a count data modeling

approach that combines the advantages of ridge and Lasso

regression. The L1-norm and L2-norm penalties are linearly

combined in Poisson elastic net regression. This enables it

to choose a restricted set of predictors while simultaneously

accounting for predictor correlations [25], [12], [10].

III. SIMULATION

In the simulation study we consider the following model:

yi ∼ Poisson(λ(xi)) (1)

where λ(xi) is the mean and variance of the response variables

based on Poisson distribution given as exp(β0 + xiβ).
We ran three different settings for our simulation,

each of them with 100 observations and 15 explanatory

variables. In addition, β0 = 0.2 is the intercept and β =
(−0.5,−0.5,−0.5,−0.5,−0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0, 0, 0, 0, 0)
represents the vector of regression coefficients. We note that,

some of the coefficients are equal to zero which shows that

the covariates corresponding to these coefficients are not

active in the model.

In the first scenario, the explanatory variable is a

15-dimension vector following a multivariate normal

distribution with mean zero and covariance I15. In the

second scenario, the vector of explanatory variables follows

a multivariate normal distribution with mean zero and block

diagonal covariance matrix where cov(x)ij = (0.7)|i−j| for

i, j = 1, 2, ..., 5, showing strong colinearity between first 5
covariates, and cov(x)ij = 1 for i = j and 0 for the rest of

covariates. In the third scenario, the explanatory covariates

follow a multivariate normal distribution with mean zero

and strong colinearity between all of them with a covariance

matrix where cov(x)ij = (0.7)|i−j| for i, j = 1, 2, ..., 15.

The estimation for the coefficients for the first simulated

dataset are shown in the Table II for the Linear regression

(LM), GLM, Ridge, Lasso and Elastic net GLM. Also,

MSE, Cross-Validation(CV), R-square and AIC criteria are

calculated.

The goal of these simulations is to compare the performance

of LM, GLM, Ridge GLM, Lasso GLM and Elastic net

GLM, together. We consider four different criteria to measure

the performance of these models which are: (a) MSE: the

mean squared error based on response residuals; (b) CV: the

10-folder cross validation based on deviance residuals; (c) R2

shows the percentage of the total variance explained by the

model and is defined to be 1- (sum of squares of residuals/ total

sum of squares); (d) AIC is the Akaike information criterion

defined as −2 ∗ log − likelihood + p ∗ n. In addition, at

the end in Table.VII we consider three measures to variable

selection accuracy: (a) avre.size: it indicates the average size

of the models; (b) corr.coef: it shows the average number of

coefficients set to 0 correctly; (c) mis.coef: it calculates the

average number of coefficients set to 0 incorrectly.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:4, 2024 

30International Scholarly and Scientific Research & Innovation 18(4) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
8,

 N
o:

4,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

58
6.

pd
f



Fig. 1 Comparison of estimated value for each β using GLM, Ridge, Lasso
and Elastic net regression based on first simulated dataset

We used the glmnet package [26] in R to fit Ridge, 
Lasso and Elastic GLM net. the Mass [27] for generating 
correlated predictors. In GLM, goodness-of-fit statistics only 
use for summarizing how well models could fit data. We 
utilized the cross validation (CV) technique to find the 
optimal tuning parameter for each simulation in Table I. 
We calculated optimal value for the tuning parameter 
through CV by considering deviance type of measure for 
Poisson regression which result is in Table I.

By having considered the optimal values in Table I, we were

able to fit the discussed models to the dataset and represent,

in Table II, MSE, R2, CV and AIC of each model.

Table II presents the results of the first simulation with

independent covariates. The GLM method outperformed the

other methods, producing the highest R-squared value of

0.987, the lowest MSE and AIC, indicating a better fit. Lasso

and Elastic net regression methods provided better results than

Ridge regression in terms of cross-validation. Furthermore,

Lasso and Elastic net were able to select relevant predictors

by setting some coefficients to zero. The results suggest that

GLM provides accurate coefficient estimation. Fig. 1 visually

compares the estimates of the different models, and shows that

the estimation under GLM is the closest to the true value of

β.

Now, we repeat the same steps for the the second simulated

dataset where there is high colinearity between the first

five explanatory variables. Fig. 2 provides the plots for the

second simulated dataset corresponding to those in Table

III that visually show the optimum value for the tuning

parameter. Also, the optimal tuning parameter for the second

simulated data considering CV with deviance measurement are

represented in Table IV.

In Table IV it is clear that the GLM model has the lowest

MSE, highest R-squared value, and lowest AIC value among

all the models, indicating it is the best-performing model.

However, its CV score is higher than some of the other models,

indicates that the model’s predictions are less accurate. The

LM model is the worst-performing, while the Ridge, Lasso,

and Elastic-net models perform reasonably well. Also the

estimation value for the coefficients are close to the real values

Fig. 2 Comparison of estimated values for each β using GLMs, Ridge,
Lasso and Elastic net regression based on second the simulated dataset

Fig. 3 Comparison of estimated values for each β using GLM, Ridge, Lasso
and Elastic net regression based on the third simulated dataset

as shown Fig. 2.

The third simulated dataset has a strong colinearity between

all the covariates. The optimal tuning parameters following CV

method with deviance measurement are in Table V.

Table VI shows that the GLM model has the lowest MSE

and highest R-square value, indicating that it has the best fit

among the models. The GLM model also has the highest

CV value, indicating that it has higher variability in its

predictions.The LM model has the highest MSE and lowest

R-square value, indicating that it has the worst fit among the

models. The Ridg model has a moderate MSE and R-square

value, and a low CV value. The Lasso model has a high MSE

and low R-square value, but a low CV value. The Elastic-net

model has a moderate MSE and R-square value, and a low CV

value. It should be noted that both the Lasso and Elastic net

models performed variable selection by setting some of the

coefficients to zero. Also the estimated values of coefficients

are shown in Fig. 3.

In Table VII, three performance measures are evaluated

for accuracy of variable selection: average size (avre.size)

of the models, correct zero estimate count (corr.coef), and

incorrect zero estimate count (mis.coef). In the first model,
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TABLE I
OPTIMAL TUNING PARAMETERS FOR FIRST DATASET BASED ON CV

Ridgeglm Lassoglm Elasticnetglm
Tunning − parameter 0.5584067 0.01320347 0.02640693

TABLE II
MODEL PERFORMANCE BASED ON FIRST SIMULATED DATASET

Model MSE CV R-square AIC
Lm 103.49 6.8 0.44 781.74
GLm 2.51 16.7 0.98 309.32

Ridgeglm 5.28 2.20 0.97
Lassoglm 19.22 1.33 0.89 394.42

Elastic netglm 10.26 1.32 0.94

the avre.size of coefficients incorrectly set to zero is notably

small, and this increases as the correlation of the coefficients

in the models rises. This trend is consistent across the

other two measures for each model. Elastic Net demonstrates

commendable performance in avre.size value and marginally

outperforms in minimizing mis.coef, while Lasso regression

excels in accurately identifying corr.coef, showcasing its

superior function in choosing correct coefficients to be zeroed.

A. Data Analysis

The dataset for this article on Lyme disease which was

taken from [28] includes information on cases from 2006 to

2011, as well as statistics on Virginia’s population and land

use. The Virginia Department of Health gathered statistics

on cases of Lyme disease (2006–2011). The 2010 Census

provided the demographic information, such as population

density, median income, and average age [29]. Data on land

cover were gathered for 2006 from the Multi-Resolution Land

Cover Consortium [30]. In this paper, we utilized the data for

Eco id = 0, which stands for the northern/western subregion,

which includes the Northern Piedmont, Blue Ridge, Ridge

and Valley, and Central Appalachian. Xie et al. [28] used this

dataset to identify important environmental and human factors

for the spread of this disease. This dataset is available in the

supplement of [28]. As a first step in developing a model, we

took into account environmental and demographic variables

that may have an impact on the development of the disease.

There are 15 variables in this dataset. The description is as

follows [28].

• x1: Percentage of developed land in each census tract

• x2: Percentage of forest in each census tract

• x3: Percentage of herbaceous in each census tract

• x5: Sum of area of forested fragments in each census

tract divided by the total area

• x6: Sum of forest fragment perimeters in each census

tract divided by the total area

• x7: CWED of developed-forest edge

• x8: TECI of developed-forest edge

• x9: CWED of forest-herbaceous edge

• x10: TECI of forest-herbaceous edge

• x11: CWED of herbaceous-developed edge

• x12: TECI of herbaceous-developed edge

Fig. 4 The response variable y in the Lyme disease dataset

• x13: Tract population density in 2010

• x14: Median age; Median age at each census tract in

2010

• x15: Mean income; Mean income (inflation adjusted) at

each census tract in 2010

Also, Fig. 4 represents the response variable in spatial

locations for region 0 in the Lyme disease data set. Fig. 5

summarizes the distribution of the response variable, the count

of Lyme disease in different locations for the study area.

As we can see in Fig. 5 plots, there are many locations

with zero cases which suggests that using zero-inflated Poisson

regression in future might be a good idea to model this

dataset. Table VIII shows summary statistics for the response

variable. It is worth noting that, the mean of the data is

6.346, and the standard deviation is 10.54087. The Poisson

log linear regression model for the expected rate of the disease

cases at location i is log μi

mi
= β0 + βTxi or logμi =

β0+βTxi+ log(mi) where mi is the population for location i

and −log(mi) is the offset term. To continue, we analysed this

dataset by LM, GLM, Ridge, GLM, Lasso GLM and Elastic

net GLM. To calculate the estimation of coefficients, we need

to find the optimal tuning parameter for Ridge, Lasso and

Elastic net penalty. Fig. 6 is the plot of coefficient vs log

of tuning parameter to find the minimum value for tunning

parameter by having MSE as a type measure.

Table IX indicates these optimal tuning parameter by CV
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TABLE III
OPTIMAL TUNING PARAMETERS FOR SECOND SIMULATED DATASET BASED ON CV

Ridgeglm Lassoglm Elasticnetglm
Tunning − parameter 1.913204 0.02358688 0.035685223

TABLE IV
MODEL PERFORMANCE BASED ON SECOND SIMULATED DATASET

Model MSE CV R-square AIC
Lm 726.824 14.6 0.40 976.65
GLm 2.088506 26.9 0.99 307.43

Ridgeglm 36.32 5.63 0.97
Lassoglm 169.42 0.98 0.86 698.68

Elastic netglm 90.34 1.28 0.92

[a] [b]

Fig. 5 (a) Probability density function (pdf) y for the Poisson distribution
with mean μ and plot (b) Cumulative distribution function (cdf) of y

method based on deviance measurement in Lyme disease

dataset.

Result for the estimation of parameters are represented in

Table X. The asterisks in this table indicate the level of

significance of the estimated coefficients, with more asterisks

indicating higher significance. Based on the evaluation metrics,

GLM appears to have the best performance in estimating

unknown parameters, with the lowest MSE value and the

highest R-square value. However, it has a high CV score,

indicating that it may be over fitting the data. LM appears

to have the worst model performance among the evaluated

models. Lasso, Ridge, and Elastic net appear to be reasonable

models with relatively low MSE values. Among these models,

elastic net has the best performance, with a relatively low MSE

and CV score and a high R-squared value. Additionally, elastic

net performed variable selection by assigning zero coefficients

to some of the predictors, which can be beneficial for model

interpretability and reducing over fitting.

Based on the analysis, the results indicate that several

variables have a significant role in the occurrence of Lyme

disease cases. Specifically, the variables that have the most

significant role are the Percentage of forest in each census

tract, Percentage of herbaceous in each census tract, Sum of

forest fragment, Sum of forest fragment perimeters in each

census tract divided by the total area, perimeters in each census

tract divided by the total area, CWED of forest-herbaceous

edge, TECI of herbaceous-developed edge, Median age at each

census tract in 2010, and Mean income at each census tract

in 2010. These variables had a higher coefficient estimate

compared to other variables, indicating that they have a

stronger relationship with the occurrence of Lyme disease

cases. Most of the finding are consistent with the literature

for this subregion [28]. Herbaceous environments can offer

deer and mice a suitable place to live. White- footed mice

or deer have been demonstrated to be highly significant

tick hosts in earlier investigations [28], [6]. For certain host

species, the presence of both forest and herbaceous regions

is attractive. For instance, deer always stay close to forest

edge. Consequently, there may be a relationship between the

occurrence of Lyme disease and the interspersion of forest

and herbaceous land. The outcome is in line with [28]. The

percentage of forest cover is significant. It was also discovered

to be a crucial factor in literature [28], [6]. In line with the

research on Lyme disease, it was also found that the mean

income was an active variable. People with lower incomes may

be less likely to have health insurance, live in areas with more

green space, participate in outdoor activities, or know how

to prevent Lyme disease. Furthermore, higher income may be

correlated with better health status and access to healthcare,

which could result in earlier diagnosis and treatment of Lyme

disease. [31], [28], [6]. The median age was an active variable

in our results on Lyme disease because older individuals may

have a weakened immune system or be more likely to be

exposed to ticks. It also found in [32]. Fig. 7 shows the

visualization of these estimations.

IV. CONCLUSION

The study focused on identifying the environmental and

economic factors contributing to the spread of Lyme disease in

Virginia. Linear Poisson and regularization regression methods

were used to identify relevant variables and avoid over fitting.

We simulated three different datasets using multivariate

normal distribution. The first dataset served as a baseline,

while in the second dataset, we introduced strong colinearity

between the first five covariates. In the third scenario, there

was strong colinearity between all of the covariates. We

applied the mentioned methods to these simulated datasets

and evaluated their performance using metrics such as MSE,

CV, R-square, and AIC. We then applied these approaches to

the Virginia Department of Health’s Lyme disease dataset to
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TABLE V
OPTIMAL TUNNING PARAMETERS FOR THIRD SIMULATED DATASET

Ridgeglm Lassoglm Elasticnetglm
Tunning − parameter 2.484119 0.03688838 0.05580942

Fig. 6 , Lasso and Elastic net Poisson regression using cross-validation based on Lyme disease dataset

TABLE VI
MODEL PERFORMANCE BASED ON THIRD SIMULATED DATASET

Model MSE CV R-square AIC
Lm 2924.98 24.5 0.32 1115.89
GLm 4.82 90.7 0.99 366.33

Ridgeglm 52.79 12.02 0.98 AIC
Lassoglm 225.05 2.92 0.94 706.51

Elastic netglm 130.20 1.86 0.96 AIC

identify the environmental factors responsible for the spread

of Lyme disease in the northern/western area of Virginia. The

study found that the percentage of forest cover, percentage

of herbaceous land, forest fragment and perimeter, median

age, and mean income are the most significant factors in the

occurrence of Lyme disease. These findings are consistent with

previous studies, which have shown that Lyme disease is more

common in areas with more forest cover, more herbaceous

land, and older populations. The study’s findings can be

used to develop strategies for preventing the spread of Lyme

disease.

For future work, as the dataset has more zeros, it may be

beneficial to utilize zero-inflated Poisson regression to model

these additional zeros independently. A zero-inflated model

was fitted and the Vuong test was conducted to compare it with

TABLE VII
COEFFICIENT SELECTION ACCURACY ACROSS MODELS, HIGHLIGHTING

DIFFERENCES BETWEEN ELASTIC NET AND LASSO REGRESSION

Lassoglm Elasticnetglm True Value

Model1
aver.size 13.6 13.9 15
mis.coef 0.26 0.25 10
corr.coef 1.18 0.836 5
Model2
aver.size 12.3 12.7 15
mis.coef 1 0.99 10
corr.coef 1.71 1.34 5
Model3
aver.size 11.9 12.3 15
mis.coef 1.03 1.02 10
corr.coef 2.04 1.67 5

the saturated Poisson regression model. The test statistic in this

dataset and a significant p-value indicated that the zero-inflated

model would be a good option.
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TABLE VIII
SUMMARY STATISTICS OF THE RESPONSE VARIABLE y FROM THE LYME DISEASE DATASET

Min 1stQuantile(25%) Median (50 %) Mean 3rdQuantile(75%) Max

0 0 3 6.346 8 115

TABLE IX
OPTIMAL TUNING PARAMETERS FOR LYME DIEASE DATASET BASED ON CV

Ridgeglm Lassoglm Elasticnetglm
Tunning − parameter 0.3819814 0.00991251 0.01245069

TABLE X
PARAMETER ESTIMATION FOR POISSON REGRESSION MODEL BASED ON THE LYME DISEASE DATASET BY ADDING OFFSET

Method LM GLM Ridgeglm Lassoglm Elasticnetglm
β0 28.44∗∗∗ 3.035∗∗∗ 3.09 3.15 3.12
β1 -51.66 −2.20∗∗∗ -0.04 . .
β2 −67.86 −2.43∗∗∗ -0.24 . -0.04
β3 -24.62 −1.05∗∗∗ 0.29 0.39 0.37
β5 7.10 0.16 -0.05 . -0.01
β6 -12.72 −0.39∗ -0.09 -0.11 -0.09
β7 -0.31 0.31∗∗∗ 0.11 . .
β8 2.82 −0.14. -0.07 . .
β9 −11.32∗∗∗ −0.35∗∗∗ -0.22 -0.04 -0.15
β10 29.24∗∗∗ 0.77∗∗∗ 0.30 . 0.12
β11 0.90 0.08 -0.00 . .
β12 -8.68 −0.26∗ -0.29 -0.22 -0.25
β13 -4.96 −0.10∗ -0.07 . .
β14 −5.38∗ −0.21∗∗∗ -0.16 -0.03 -0.09
β15 25.94∗∗∗ 0.63∗∗∗ 0.56 0.458 0.51

MSE 1584.14 58.75 62.61 70.53 66.52
CV 8.3 81.7 5.50 5.49 5.50

R− square 0.33 0.47 0.43 0.36 0.40
AIC 5981.90 4542.84 AIC 20321.67 AIC

Fig. 7 Comparison of estimated values for each β using GLM, Ridge, Lasso
and Elastic net regression based on the Lyme Diease dataset
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