
 

 

  
Abstract—A higher order spline interpolated contour obtained 

with up-sampling of homogenously distributed coordinates for 
segmentation of kidney region in different classes of ultrasound 
kidney images has been developed and presented in this paper. The 
performance of the proposed method is measured and compared with 
modified snake model contour, Markov random field contour and 
expert outlined contour. The validation of the method is made in 
correspondence with expert outlined contour using maximum co-
ordinate distance, Hausdorff distance and mean radial distance 
metrics. The results obtained reveal that proposed scheme provides 
optimum contour that agrees well with expert outlined contour. 
Moreover this technique helps to preserve the pixels-of-interest 
which in specific defines the functional characteristic of kidney. This 
explores various possibilities in implementing computer-aided 
diagnosis system exclusively for US kidney images. 
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I. INTRODUCTION 

LTRASONIC imaging gained widespread acceptance to 
visualize the organs of human abdominal cavity [1-5,7-

13,24] in the recent years. Remarkable growth in such 
imaging technique and the use of computers to process the 
image data, results in an explosion in the number and 
importance of ultrasound (US) images stored in the most of 
the hospitals. In general diagnostic studies of US images are 
subjective and the resultant performance suffers from intra- 
and inter-observer variability. Unlike all imaging modalities, 
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US imaging is subject to a number of artifacts that degrade 
image quality and compromise diagnostic confidence [3]. The 
major performance limiting factor in visual perception of US 
imaging is a multiplicative noise called speckle that makes the 
signal or lesion difficult to detect [4,5]. Also other factors that 
compounds are viewing distance, display size, resolution, 
brightness, contrast, sharpness, colorfulness and naturalness 
[6]. These constraints limit the possibility of segmentation of 
kidney region and the extraction of kidney features that helps 
to evaluate the functional characteristic objectively. 

Many research papers on segmentation of kidney region in 
US images have been published using various methodologies 
in the recent past. Bakker et. al.[7] determined the in-vitro 
kidney volume using an ellipsoidal method in which manual 
adjustment of an ellipse template was made over the pre-
assumed external boundary of the kidney to estimate the 
volume. Semi-automatic segmentation method was also 
reported by Matre et. al.[8] for in-vitro kidney. In these 
methods the contour estimation was made for in-vitro kidney, 
but in real clinical situation the kidney is in-vivo. Classical 
segmentation methods are fast and useful only for simple and 
controlled situation [9]. As US kidney images are noisy and 
have poor signal-to-noise ratio, robust method that makes use 
of    a-priori information to compensate for such difficulty 
may be used as an alternative.    Jun xie et.al. [10] developed a 
semi-automatic segmentation frame work using both texture 
and shape priors for kidney contour estimation from noisy US 
image. A novel approach for contour detection of human 
kidneys from US images was also proposed by Marcos 
Martin-Fernendz et.al. [11]. But these semi-automatic 
schemes require either a prior knowledge of image in terms of 
shape and features, which is used to form a smooth contour or 
need a predefined template for unsupervised deformation. 
Abouzar Eslami et.al. [12,13] concerned in particular a cystic 
kidney and developed an automatic approach for renal cyst 
segmentation from US images. This method is faster and also 
non-iterative with better accuracy.  

The semi-automatic or automatic segmentation procedures 
suggested so far deals with contouring the kidney region by 
extracting localized features that reflect the region property. 
Though the performance of the methods in contouring the 
kidney region is well appreciated, they fail to formulate a 
generalized scheme by considering various kidney categories. 
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Unless a common method for contour estimation irrespective 
of kidney category exits, the implementation of a computer-
aided diagnosis (CAD) system may not be possible. Mostly 
the normal kidney images have been considered except 
[12,13] where the cystic kidneys have been taken for 
implementation. Due to the presence of speckle noise and 
other constraints establishing the general segmentation 
scheme for different classes of kidney is difficult and so far 
not been reported.  
In this paper, a reliable semi-automatic segmentation scheme 
using a higher order spline interpolated contour obtained with 
up-sampling of homogenously distributed coordinates has 
been proposed. Uniqueness of this method lies in achieving 
the contour for different highly reported kidney classes 
namely normal (NR), medical renal diseases (MRD) and 
cortical cyst (CC).  
 

II. METHODS  

A. Image data acquisition 
The images used for the analysis are acquired from two 

types of scanning systems namely, ATL HDI 5000 curvilinear 
probe with transducer frequency range of 3 – 6 MHz and 
Wipro GE LOGIC 400 curvilinear probe with transducer 
frequency range of 3 – 5 MHz. As the sonographic evaluation 
is made based on the distribution of echogenity that reflects 
tissue characteristics, for better echo visualization the 
longitudinal cross section of kidney is taken to include renal 
sinus, medulla and cortex regions as suggested by the experts. 
This also ensures better visual interpretation of the normal and 
diseased kidney. The transducer frequency is fixed at 4 MHz. 
In total, 150 images with 50 images in each category are 
obtained from male and female subjects of age 46 (±12), 50 
(±18) and 54 (±13) years. The images of both right and left 
kidneys are considered for the analysis. The kidney diseases 
are usually categorized as hereditary, congenital or acquired. 
The most common hereditary disorder is cystic diseases which 

includes simple renal cyst and complex renal cyst or poly cyst. 
The kidneys affected with these diseases are considered under 
CC category. The sonographic features of renal cyst include a 
well defined mass lesion, smooth wall and circular hypo 
echoic mass with good through transmission. Any congenital 
or acquired kidney diseases typically cause renal infection 
and/or destruction of kidney tissues that may lead to end stage 
chronic renal failure are considered under MRD category. Due 
to tissue destruction, anatomical separation between renal 
sinus, medulla and cortex becomes difficult. The sonographic 
evaluation shows hyper echoic kidney region with increased 
cortical echogenity and differentiation between cortex and 
collecting system is poor. The sample US kidney images of 
NR, MRD and CC are shown in the Fig 1. It can be seen that 
ultrasound shows appreciable renal border in all three cases, 
but internally due to pathology involved the echogenity varies 
in diseased kidneys (MRD and CC) when compare to NR. 

B. Segmentation of kidney region 
In this section the different segmentation methods used for 
contouring the kidney region is discussed in detail. Any 
segmentation scheme should not only contour the kidney 
region but must involve less complexity in achieving it. Also 
the scheme must concern with minimal expert intervention 
and be reliable for segmentation of different categories of 
kidney. In the present study four types of segmentation 
schemes are used for contouring namely expert outlined 
contour (EOC), modified snake model contour (MSMC), 
Markov random field contour (MRFC) and proposed higher 
order spline interpolated contour obtained with up-sampling 
of homogenously distributed coordinates (i-HSIC). Based on 
the performance analysis it will be shown that proposed 
method agrees well with the EOC and may be used for 
different kidney categories. The entire implementation is made 
by using MATLAB 6.1 software. 
 

 

Fig. 1 a. Normal image of male with age 38 years, b. Medical renal diseases image of male with age 45 years and c. 
Cortical polycystic disease image of female with age 51 years. 
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The EOC is obtained for each image by allowing the experts 
to draw the manual outline through visual inspection over the 
identified boundary by moving the cursor using mouse. For an 
image six experts are requested to form an outline individually 
to account the inter-expert variability. As the segmentation 
schemes reported for contouring the kidney region in 
literatures not concern about the different kidney categories, a 
common gold-standard contour or method is not available. 
Hence the average of the multiple experts’ outline is derived 
by using the averaging procedure suggested by Vikram 
Chalana and Yongmin Kim [14]. The resultant outline is 
termed as EOC and may be used as a gold-standard for 
comparative study of contours formed by MSMC, MRFC and 
i-HSIC. The second segmentation scheme is an enhanced form 
of classical active contour approach in particular, snake model 
proposed by Kass et.al. [15]. The modification of snake model 
contour has been made as suggested by Cohen [16]. The 
contour achieved with this scheme is named as MSMC. Here 
the initial ellipse is drawn manually either inside or outside 
the kidney region. This will act as a seed contour that will 
deflate for negative deformation function and inflate for 
positive deformation function according to the deflation or 
inflation force controlled by the image gradient. As the 
positive deformation function that inflates is more appropriate 
for the US kidney images [11], the same has been used for the 
present study. The MRFC is obtained by formulating the 
problem in Bayesian probabilistic frame work and make use 
of Markov random fields (MRFs) [11,17]. Here, the 
deformation of predefined template has been incorporated 
using MRFs to get optimum kidney contour. The template is 
manually adjusted to approximately match the kidney 
boundary and then smoothly deformed using the model. This 
deformation procedure is fully unsupervised. The prior 
distributions will model the knowledge about the contours and 
data-driven likelihood terms will describe the image statistics 
related to the contour in search. The maximum a posteriori 
(MAP) estimation under MRFs model gives rise to the 
optimum contour. As mentioned, this model requires a 
template from which deformation starts taking place. 
Formulation of template is very simple, on the selected image 
the center point is clicked-in with the mouse. Then a built-in 
routine form a projection of straight lines from the center 
point at regular interval of 2π/30 radians. These lines are used 
as a reference by the experts to click-in the points on the 
kidney boundary. The angle defined for the formation of 
straight line is fixed at 2π/30 radians to minimize the expert 
maneuver in selection of points. This set of twelve points is 
interpolated to get a smooth contour. The templates created by 
above procedure may be added with two control points for 
manually adjusting the template to match the kidney boundary 
which is then deformed by using MRFs. In i-HSIC method, 
expert clicks on the center along with 10 – 15 points on the 
visible portion of kidney boundary. To this extent experts are 
not biased to click at specified uniformly spaced points as in 
the case of MRFC scheme. If these points are connected by 
interpolation then it may appears to be a simple method of 
contour formation. Also such contour will not correlate well 
with EOC for most of the cases. Hence certain improvements 
are made in the proposed method by defining homogeneous 

coordinates of points and the order of B-spline interpolation to 
guarantee optimum contour for different categories of kidney. 
There is no restriction in the number of points selected, but to 
standardize the procedure and to minimize the expert 
maneuver lower and upper limits are defined.  
It is understood that number of points selected by the experts 
are not sufficient for all intra and inter category of kidney. The 
possible solution is to up-sample the points. As these points 
are available within the discrete space they may be expressed 
in polar coordinates [18], as defined by the vectors C(x,y) and 
θ(x,y), which denote moduli and phases, respectively. The up-
sampling may be performed by translating the polar 
coordinate representation to uniform or homogenous 
coordinate representation. In the first method the phases are 
uniformly distributed in a range of 2π radians, whereas in the 
second method, the area enclosed within the every angular 
sector are homogeneously distributed over the range of 2π 
radians. In the former method the points closer to the center 
are closer to each other and the points farther from the center 
are more separated. In the latter case the points farther from 
the center point are closer to each other and those points 
located closer to the center are angularly more separated, so 
that the areas of successive angular sectors are equal. The 
problem associated with the former method is that as contour 
points are more separated at steep edges the contour formed 
may not have sufficient smoothness. This shortcoming has 
been resolved in latter method, where adequate points are 
available to form smooth contour at bending edges. Once the 
upsampling of points in homogeneous coordinate is made, 
these points are connected by higher order spline interpolation 
technique to form a smooth contour [19 – 21]. 

If these available points are regarded as a discrete signal 
( )kf , now it become necessary to estimate the intermediate 

signal values to consider the contour as a continuum ( )xfc  
rather than a discrete array of pixel coordinate. Many 
researchers have used the splines for this purpose [22, 23]. A 
polynomial spline of degree n is a piecewise polynomial 
function of degree n with pieces that are patched together to 
guarantee the continuity of the function and its derivative up 
to the order n-1. Every nth order spline ( )xf n

c  can be 
represented by the expansion, 

( ) ( ) ( )∑
−=

−=
α

α

β
k

nn
c kxkcxf ,  Rx ∈∀                   (1) 

where the ( )kc  are called B-spline coefficients. The basis 

functions ( )kxn −β  are the integer shifts of the separable B-

spline ( )xnβ  and ‘R’ is the notation for real number. The B-
spline of a higher order n can be defined by an explicit 
expression,  

( )
nn

k

kn
k

n knxC
n

x
+

+

=

+ ⎟
⎠
⎞

⎜
⎝
⎛ −

+
+−= ∑ 2

1)1(
!

1 1

0

1β                      (2) 

Here 1+n
kC are the binomial coefficients and the function +x  

is defined as follows 
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    =+x    x       for x > 0 
               0      otherwise                                (3) 

In most of the spline related works, the splines of order 3 
(Cubic B-spline) have been used since they appear to be 
particularly popular among the researchers for interpolation in 
general [24]. Using this process, a series of unique cubic 
polynomials are fitted between each data points, with a 
demand that the contour obtained be continuous and appear 
smooth. But the primary reason for working with higher order 
splines is because of their shortest function with an order of 
approximation, which in turn provides better support length, 
L=n+1. The support length may be defined as the maximum 
distance of separation between successive knots or points. 
This short support (short function with better support length) 
property is also a key consideration for computational 
efficiency. Also splines tend to perform better and better in 
terms of smoothness as order increases. By increasing the 
order, splines representation swap from the simplest piecewise 
constant (n=0) and piecewise linear (n=1) to the other 
extreme, which corresponds to a band limited signal model 
(n→+α). The decision regarding the extent to which order can 
be increased to form a smooth contour has to be identified and 
same must be implemented.  

This is carried out by an estimation of the simple coordinate 
distance measured between i-HSIC contours of different order 
as given by, 

( ) ∑
=

−+−=
k

i
iiiiBA byaxCCd

1

22 )()(,                   (4)  

  where CA and CB are the contours obtained for order n=P 
and n=Q 
   x,y are ordered pair of coordinates of CA 
   a,b are ordered pair of coordinates of CB 
   i being the number of ordered pair of coordinates, 
i=0,1,….,k 
The distance obtained for order 3 and 5 is 246.66, for order 5 
and 7 is 98.34, for order 7 and 9 is 0.00 and for order 9 and 11 
is 0.00. These results indicate any further increase in order 
above 7 of the splines become insignificant. Therefore in the 
present work, the B-splines of order 7 have been employed.   

C . Contour Validation 
The comparison and validation of segmentation schemes 

using standardized protocols becomes necessary to evaluate 
the performance of the contours. This is to be done for entire 
images to test the hypothesis that the segmentation output is 
not statistically different from the gold standard (EOC). For 
this purpose the parameter derived from the contours such as 
area enclosed or perimeter may be compared or the property 
of the region enclosed using statistical, texture and power 
spectral parameters may be compared or the contours 
themselves may be compared directly. In first two cases, the 
resultant value of parameters is application dependant and 
often the accuracy of measuring these parameters is the 
functional goal of image segmentation. Hence comparing the 
contour directly will provide a more definite evaluation.  
Three such metrics namely maximum coordinate distance 
‘Dmax(ci,cj)’, mean radial distance ‘μrd’ and Hausdorff distance 

‘ ),( 21 CCe ’ have been used to compare the contours, 
MSMC, MRFC and i-HSIC with EOC. The validation of i-
HSIC is made based on the result obtained by this 
comparison.  

As mentioned in section II B, the contour can be defined as 
a series of points in polar coordinate and therefore can be 
represented by a vector C = {c1,c2,c3….,cL), where L is the 
number of points in the contour. Each ‘c’ is an ordered pair of 
the x and y coordinates of a point on the contour. Using this 
vector notation the three metrics are evaluated.  
The coordinates of a particular point pc  in the contour is 

taken as a reference initially and distant measure ‘d’ is 
estimated between pc  and all the points qc . This process is 

repeated until all the points have been considered as reference. 
This will result in ‘p’ maximum distance measures. The 
coordinates of the points that are dislocated farthest is then 
obtained by finding the maximum of ‘p’ maximum values. 
The maximum coordinate distance ‘Dmax(ci,cj)’ as given 
Eq.(5).  

( ) ( ){ }⎥
⎦

⎤
⎢
⎣

⎡
−= qp

p
ji ccdccD maxmax,max                          (5) 

where ci and cj are the coordinates of the points that are 
dislocated farthest 
   p,q = 1,2,3,…..L 

In other two metrics instead of measuring distance between 
the points, the distance between the contours is estimated. The 
mean radial distance ‘μrd’ between the contours is defined by 
first choosing a common centroid of the two contours from 
which radial lines are drawn projecting outward.  The 
intersection of these radial lines with the two contours defines 
the corresponding points and the metric termed as ‘μrd’ is used 
to estimate the dislocation distance between the contours [25] 
as in Eq. (6). If two contours are represented by vectors 
C1={c11,c12,c13….,c1L),  and C2={c21,c22,c23….,c2L), then ‘μrd’ 
is defined by, 

( ) ( )∑
=

−=
K

i
CCrd KirKir

K 1

221
21

ππμ                    (6)  

where 
1Cr  and 

2Cr are the radial distance from common 

centroid to the coordinates of two contours and K is the 
number of points in the contour.  

In Hausdorff distance ‘ ),( 21 CCe ’ initially the distance to 
the closest point c1i to the contour C2 is calculated as  

( ) ijji CCCCd 1221 min, −=   

and the distance to the closest point c2i to the contour C1 is 
measured as  

( ) jiij CCCCd 2112 min, −=  then ‘ ),( 21 CCe ’ between the 

two contours is defined as the maximum of the distance to the 
closest points between the two contours [26] and it is given by 

( ) ( ){ } ( ){ }⎟
⎠
⎞⎜

⎝
⎛= 122121 ,max,,maxmax, CCdCCdCCe jjii

     (7)  
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The metrics of Eqn. (5), (6) and (7) are used to perform 
comparative study on contours to evaluate the performance of 
i-HSIC.  

III.  RESULTS 
The formation of EOC by the individual expert illustrates 

serrated variation in contour due to the motion artifact. This 
irregularity increases with the mental or physical bias of the 
expert. The contour has become smooth with minimum 
fluctuation by using the averaging procedure. The EOC and 
MSMC attained for three classes of kidney are shown in the 
Fig. 2. For NR, both the contours are in good agreement, 
whereas in case of MRD, the MSMC inflate excessively due 
the insufficient image gradient at the boundary. In cortical 
polycystic case, the locating the initial seed contour for 
inflation determines the contour formation. When initial seed 
contour is located at cystic and non-cystic region, the MSMC 
totally fails to encapsulate the entire kidney as observed in 
Fig.2c and this leads to the formation of contours that disagree 
with EOC. For 78% of NR images, the contours formed by 
EOC and MSMC show appreciable similarity.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In 22% of cases due insufficient image gradient at interior and 
exterior region of boundary, MSMC fails to fit well with 
EOC. For MRD images, 32% of MSMC shows better 

similarity with EOC whereas 40% of MSMC inflate 
excessively due to lack of image gradient and in 28% of 
MSMC, some part of contour is fairly correct, some areas get 
rapt inside the inner structure and in some region it inflate 
excessively. MSMC completely fails in the region of cysts, 
only in 36% of polycystic cases where cystic area in pixel is 
less than 140, MSMC agrees with EOC. The MRFC results 
from deformation of predefined template and this takes place 
within the specified deformation zone interval. Table I 
enumerate the settings of eight parameters to achieve MRFC. 
For all three kidney classes, the number of sweeps (Ns) with 
simulated annealing (SA) algorithm is 200. The number of 
rays (J) drawn from the template contour center point varies 
from 60 to 70. Each ray is discretized into K points. The 
number of points (K) per ray is 15 and the deformation zone 
interval is given by drmax = 20 pixels in all three cases. The 
vector of posterior parameters of the energy function pϑ that 
includes probabilistic features namely prior model parameters 
( 21,ϑϑ ) and likelihood parameters ( 43 ,ϑϑ ) are also given.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The limitation of MRFC is obvious from Table 1 that 
certain parameters have to be manually adjusted for each 
image before the deformation of template. Even though the 
selection of initial coordinates is subjective in i-HSIC method, 

Fig. 2. Contours obtained by EOC and MSMC for three classes of kidney a. Normal Image b. Medical renal diseases c. 
cortical poly cystic disease.                EOC;               MSMC;               MSMC. In both MSMC initial seed contour is 
selected within the enclosed region. 

 
Fig. 3. Contours attained by using EOC, i-HSIC and MRFC segmentation schemes for three classes of kidney a. Normal 
Image b. Medical renal diseases c. cortical poly cystic disease.                 EOC;                    i-HSIC;                 MRFC 
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fine tuning of any such parameters is not been involved. The 
EOC, i-HSIC and MRFC formed for NR, MRD and CC 
kidney images is shown in the Fig. 3.  
 

TABLE I 
INITIALIZATION VALUES OF THE PARAMETERS TO OBTAIN 

MRFC FOR THREE KIDNEY CATEGORIES 
Kidney 

Category 
NS J K drmax ( )4321 ,,, ϑϑϑϑϑ =p

 
NR 200 60-70 15 20 30-35; 25-35; 25-30; 35-40 

MRD 200 75 15 20 30-35; 30-35; 25-30; 35-40 
CC 200 75 15 20 30-40; 30-35; 30-35; 35-40 

IV. DISCUSSION 
The results of MSMC obtained for MRD and CC kidney 

images suggest that MSMC fail in most of the cases and not 
suitable for segmentation of different classes of kidney. This 
indicates automatic segmentation schemes reported in the 
literatures may not perform favorably. Because the interior 
region of kidney is not homogenous and often sufficient 
image gradient with surrounding tissues is not noticed. In 
some scans, the kidney region is partially occluded. Above all, 
the posed problem deals with different kidney classes, 
wherein sonographic visualization confirms anatomical 
variation in tissue characteristic. Hence automatic contouring 
procedures that are based on local or global features may not 
attend to sonographic variations in intra and inter kidney 
classes.  
Referring to the Fig.3, though the resultant MRFC agrees with 
both EOC and i-HSIC fine adjustment (refer Table 1, range of 
values may be noticed for certain parameters) of ‘J’ and 
posterior parameters is necessary before deformation to 
achieve optimum contour. This makes the procedure more 
subjective and time consuming. But after setting the 
parameters the contour formation takes on an average of 0.6 
seconds. The reasons for this manual adjustment includes the 
variation in sonographic visualization of each US kidney 
image, unclear visual inspection of kidney boundary due to 
occlusion, dissimilarity in brightness and contrast level of 
each image because of the variation in setting of scanning 
system parameters. The failure of MSMC and biased setting 
of the parameters in MRFC suggests the inferior performance 
of the methods in segmenting the kidney region.  
To evaluate the performance of i-HSIC and MRFC with 
respect to EOC three metrics Dmax(ci,cj), μrd and 

),( 21 CCe are calculated. If Ca, Cb and Cc represent EOC, i-
HSIC and MRFC respectively, the metrics computed for NR, 
MRD and CC images are shown in the Fig. 4 and 5. It can be 
seen that mean, maximum and minimum values of maximum 
coordinate distance for three contours are almost same. Based 
on this similarity it cannot be concluded that i-HSIC and 
MRFC correlate with EOC. Because this metric cares only the 
two coordinates points in the contour for the estimation of 
distance. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The estimation of mean radial distance ‘μrd’ and Hausdorff 
distance ‘ ),( 21 CCe ’ shows i-HSIC agrees well with EOC. 

By referring the Table II and Fig.5, the μrd and ),( 21 CCe  
between Ca and Cb is comparably lesser than between Ca and 
Cc. Even for a worst case CC image the maximum value of 
‘μrd’ is 5.9727 between Ca and Cb whereas it is 17.8588 for Ca 
and Cc. Also ),( 21 CCe is 29.0902 for Ca and Cb and 77.6505 
for Ca and Cc. This indicates i-HSIC has better 
correspondence with EOC when compared to MRFC in all 
three cases of US kidney images. Based on these results it is 
understood that i-HSIC method is superior for the situation 
where different kidney categories are considered. The US 
kidney images that are segmented using i-HSIC scheme may 
be made available for further analysis to extract content 
descriptive features. If such features exist then developing a 
CAD system that provides certain possibilities like (i). 
establishing a quantitative universal reference for the US 
kidney images, (ii). implementing image retrieval in medical 
application (IRMA) system, (iii). making comparative study 
on images for objective decision, (iv). developing an expert 
system that automatically recognizes the extent of pathology 
or normality, (v). examining extent of healing or failure under 
post-therapy observation may be realized in practice.  

V. CONCLUSION 
The implementation of the general segmentation procedure 

for US kidney images has been dealt to obtain a semi-
automated reliable contour. In this paper, three different 
classes of varied anatomical tissue representation is been 
considered. The results obtained reveal that MSMC fails in 
most of MRD and CC cases. The MRFC provide better 
contour that perform comparably well with EOC but 
subjective parameters setting in each case influence the 
reliability in obtaining contour in term of the quality and time. 
Though a partial objectiveness is involved in acquiring 
boundary by selecting initial contour coordinate, the i-HSIC 
method provides contour that agrees well with the EOC. To 
conclude, the investigation on various segmentation schemes 
suggest that i-HSIC may be more suitable to contour kidney 
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Fig. 4. The maximum co-ordinate distance Dmax(ci,cj) 
obtained for contours Ca(EOC), Cb (i-HSIC), and Cc(MRFC) 
of three kidney classes.
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region of different categories irrespective of wide variation in 
size, orientation and gray level distribution. Also the proposed 
scheme explores various possibilities in implementing specific 
CAD system for US kidney images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE II 

RESULTS OBTAINED FOR VALIDATION METRICS μRD AND 
),( 21 CCe   

Ca – EOC; Cb – i-HSIC; Cc – MRFC 
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Validation Metrics 

μrd ),( 21 CCe  
Kidney 

Category 
Ca – Cb Ca – Cc Ca – Cb Ca – Cc 

 Mean 
NR 2.8682 3.263 7.9080 9.1318 

MRD 2.9633 3.0704 8.5870 10.4561 
CC 3.8991 5.3124 11.5995 17.6534 

 Maximum 
NR 5.3238 7.6162 19.805 19.8374 

MRD 4.6756 4.9496 21.0678 34.4591 
CC 5.9727 17.8588 29.0902 77.6505 

 Minimum 
NR 1.6381 1.7952 1 4.7626 

MRD 1.9101 2.0013 2.2361 5.725 
CC 2.4619 2.8839 2 6.7544 

Fig. 5. The mean radial distance ‘μrd’ and Hausdorff distance 
‘HD’ computed between contours Ca (EOC), Cb (i-HSIC) 
and Ca (EOC) and Cc (MRFC) 
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