Search results for: Control unit design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8179

Search results for: Control unit design

8149 Throughput Optimization on Wireless Networks by Increasing the Maximum Transmission Unit

Authors: Edward Guillén, Stephanne Rodríguez, Jhordany Rodríguez

Abstract:

Throughput enhancement can be achieved with two main approaches. The first one is by the increase of transmission rate and the second one is reducing the control traffic. This paper focuses on how the throughput can be enhanced by increasing Maximum Transmission Unit -MTU. Transmission of larger packets can cause a throughput improvement by reducing IP overhead. Analysis results are obtained by a mathematical model and simulation tools with a main focus on wireless channels.

Keywords: 802.11, Maximum Transfer Unit, throughput enhancement, wireless networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3575
8148 Design of Liquids Mixing Control System using Fuzzy Time Control Discrete Event Model for Industrial Applications

Authors: M.Saleem Khan, Khaled Benkrid

Abstract:

This paper presents a time control liquids mixing system in the tanks as an application of fuzzy time control discrete model. The system is designed for a wide range of industrial applications. The simulation design of control system has three inputs: volume, viscosity, and selection of product, along with the three external control adjustments for the system calibration or to take over the control of the system autonomously in local or distributed environment. There are four controlling elements: rotatory motor, grinding motor, heating and cooling units, and valves selection, each with time frame limit. The system consists of three controlled variables measurement through its sensing mechanism for feed back control. This design also facilitates the liquids mixing system to grind certain materials in tanks and mix with fluids under required temperature controlled environment to achieve certain viscous level. Design of: fuzzifier, inference engine, rule base, deffuzifiers, and discrete event control system, is discussed. Time control fuzzy rules are formulated, applied and tested using MATLAB simulation for the system.

Keywords: Fuzzy time control, industrial application and timecontrol systems, adjustment of Fuzzy system, liquids mixing system, design of fuzzy time control DEV system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2550
8147 Effective Internal Control System in the Nasarawa State Tertiary Educational Institutions for Efficiency: A Case of Nasarawa State Polytechnic, Lafia

Authors: Ibrahim Dauda Adagye

Abstract:

Effective internal control system in the bursary unit of tertiary educational institutions is geared toward achieving quality teaching, learning and research environment and as well assist the management of the institutions, particularly when decisions are to be made. While internal control system exists in all institutions, the outlined objectives above are far from being achieved. The paper therefore assesses the effectiveness of internal control system in tertiary educational institutions in Nasarawa State, Nigeria with specific focus on the Nasarawa State Polytechnic, Lafia. The study is survey, hence a simple closed ended questionnaire was developed and administered to a sample of twenty seven (27) member staff from the Bursary and the Internal audit unit of the Nasarawa State Polytechnic, Lafia so as to obtain data for analysis purposes and to test the study hypothesis. Responses from the questionnaire were analysed using a simple percentage and chi square. Findings shows that the right people are not assigned to the right job in the department, budget, and management accounting were never used in the institution’s operations and checking of subordinate by their superior officers is not regular. This renders the current internal control structure of the Polytechnic as ineffective and weak. The paper therefore recommends that: transparency should be seen as significant, as the institution work toward meeting its objectives, it therefore means that the right staff be assigned the right job and regular checking of the subordinates by their superiors be ensued.

Keywords: Bursary unit, efficiency, Internal control, tertiary educational institutions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3890
8146 A Servo Control System Using the Loop Shaping Design Procedure

Authors: Naohiro Ban, Hiromitsu Ogawa, Manato Ono, Yoshihisa Ishida

Abstract:

This paper describes an expanded system for a servo system design by using the Loop Shaping Design Procedure (LSDP). LSDP is one of the H∞ design procedure. By conducting Loop Shaping with a compensator and robust stabilization to satisfy the index function, we get the feedback controller that makes the control system stable. In this paper, we propose an expanded system for a servo system design and apply to the DC motor. The proposed method performs well in the DC motor positioning control. It has no steady-state error in the disturbance response and it has robust stability.

Keywords: Loop Shaping Design Procedure (LSDP), servosystem, DC motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2410
8145 An Approach to Control Design for Nonlinear Systems via Two-stage Formal Linearization and Two-type LQ Controls

Authors: Kazuo Komatsu, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear control design for nonlinear systems by using two-stage formal linearization and twotype LQ controls. The ordinary LQ control is designed on almost linear region around the steady state point. On the other region, another control is derived as follows. This derivation is based on coordinate transformation twice with respect to linearization functions which are defined by polynomials. The linearized systems can be made up by using Taylor expansion considered up to the higher order. To the resulting formal linear system, the LQ control theory is applied to obtain another LQ control. Finally these two-type LQ controls are smoothly united to form a single nonlinear control. Numerical experiments indicate that this control show remarkable performances for a nonlinear system.

Keywords: Formal Linearization, LQ Control, Nonlinear Control, Taylor Expansion, Zero Function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
8144 Microgrid: Low Power Network Topology and Control

Authors: Amit Sachan

Abstract:

The network designing and data modeling developments which are the two significant research tasks in direction to tolerate power control of Microgrid concluded using IEC 61850 data models and facilities. The current casing areas of IEC 61580 include infrastructures in substation automation systems, among substations and to DERs. So, for LV microgrid power control, previously using the IEC 61850 amenities to control the smart electrical devices, we have to model those devices as IEC 61850 data models and design a network topology to maintenance all-in-one communiqué amid those devices. In adding, though IEC 61850 assists modeling a portion by open-handed several object models for common functions similar measurement, metering, monitoring…etc., there are motionless certain missing smithereens for building a multiplicity of functions for household appliances like tuning the temperature of an electric heater or refrigerator.

Keywords: IEC 61850, RCMC, HCMC, DER Unit Controller.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2498
8143 Natural Convection of Water-Based CuO Nanofluids in a Cylindrical Enclosure

Authors: Baha Tulu Tanju, Kamil Kahveci

Abstract:

Buoyancy driven heat transfer of nanofluids in a cylindrical enclosure used as a control unit in the subsea hydrocarbon injection wells is investigated in this study. The governing equations obtained with the Boussinesq approximation are solved using Comsol Multiphysics finite element analysis and simulation software. The base fluid is water and CuO is used as nanoparticles. Solution is obtained for nanoparticle solid volume fraction of 8% and for Rayleigh number in the range of 105-107. The results show that nanoparticle usage in the cylindrical electronic control unit has a significant effect on the flow and heat transfer.

Keywords: CuO, enclosure, nanofluid, natural convection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2033
8142 Control Strategy for an Active Suspension System

Authors: C. Alexandru, P. Alexandru

Abstract:

The paper presents the virtual model of the active suspension system used for improving the dynamic behavior of a motor vehicle. The study is focused on the design of the control system, the purpose being to minimize the effect of the road disturbances (which are considered as perturbations for the control system). The analysis is performed for a quarter-car model, which corresponds to the suspension system of the front wheel, by using the DFC (Design for Control) software solution EASY5 (Engineering Analysis Systems) of MSC Software. The controller, which is a PIDbased device, is designed through a parametric optimization with the Matrix Algebra Tool (MAT), considering the gain factors as design variables, while the design objective is to minimize the overshoot of the indicial response.

Keywords: Active suspension, Controller, Dynamics, Vehicle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
8141 Selection and Design of an Axial Flow Fan

Authors: D. Almazo, C. Rodríguez, M. Toledo

Abstract:

This work presents a methodology for the selection and design of propeller oriented to the experimental verification of theoretical results. The problem of propeller selection and design usually present itself in the following manner: a certain air volume and static pressure are required for a certain system. Once the necessity of fan design on a theoretical basis has been recognized, it is possible to determinate the dimensions for a fan unit so that it will perform in accordance with a certain set of specifications. The same procedures in this work then can be applied in other propeller selection.

Keywords: airfoil, axial flow, blade, fan, hub, mathematical algorithm, propeller design, simulation, wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13599
8140 Design of Nonlinear Robust Control in a Class of Structurally Stable Functions

Authors: V. Ten

Abstract:

An approach of design of stable of control systems with ultimately wide ranges of uncertainly disturbed parameters is offered. The method relies on using of nonlinear structurally stable functions from catastrophe theory as controllers. Theoretical part presents an analysis of designed nonlinear second-order control systems. As more important the integrators in series, canonical controllable form and Jordan forms are considered. The analysis resumes that due to added controllers systems become stable and insensitive to any disturbance of parameters. Experimental part presents MATLAB simulation of design of control systems of epidemic spread, aircrafts angular motion and submarine depth. The results of simulation confirm the efficiency of offered method of design. KeywordsCatastrophes, robust control, simulation, uncertain parameters.

Keywords: Catastrophes, robust control, simulation, uncertain parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1292
8139 An Analytical Study on Rotational Capacity of Beam-Column Joints in Unit Modular Frames

Authors: Kyung-Suk Choi, Hyung-Joon Kim

Abstract:

Modular structural systems are constructed using a method that they are assembled with prefabricated unit modular frames on-site. This provides a benefit that can significantly reduce building construction time. The structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of traditional steel moment-resisting systems. However, both systems are different in terms of beam-column connection details which may strongly influence the lateral structural behavior. Specially, the presence of access holes in a beam-column joint of a unit modular frame could cause undesirable failure during strong earthquakes. Therefore, this study carried out finite element analyses (FEMs) of unit modular frames to investigate the cyclic behavior of beam-column joints with the access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into semi-rigid connections even if there are access holes.

Keywords: Unit modular frame, steel moment connection, nonlinear analytical model, moment-rotation relation, access holes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2720
8138 Battery Energy Storage System Economic Benefits Assessment on a Network Frequency Control

Authors: Kréhi Serge Agbli, Samuel Portebos, Michaël Salomon

Abstract:

Here a methodology is considered aiming at evaluating the economic benefit of the provision of a primary frequency control unit using a Battery Energy Storage System (BESS). In this methodology, two control types (basic and hysteresis) are implemented and the corresponding minimum energy storage system power allowing to maintain the frequency drop inside a given threshold under a given contingency is identified and compared using DigSilent’s PowerFactory software. Following this step, the corresponding energy storage capacity (in MWh) is calculated. As PowerFactory is dedicated to dynamic simulation for transient analysis, a first order model related to the IEEE 9 bus grid used for the analysis under PowerFactory is characterized and implemented on MATLAB-Simulink. Primary frequency control is simulated using the two control types over one-month grid's frequency deviation data on this Simulink model. This simulation results in the energy throughput both basic and hysteresis BESSs. It emerges that the 15 minutes operation band of the battery capacity allocated to frequency control is sufficient under the considered disturbances. A sensitivity analysis on the width of the control deadband is then performed for the two control types. The deadband width variation leads to an identical sizing with the hysteresis control showing a better frequency control at the cost of a higher delivered throughput compared to the basic control. An economic analysis comparing the cost of the sized BESS to the potential revenues is then performed.

Keywords: Battery Energy Storage System, electrical network frequency stability, frequency control unit, PowerFactory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
8137 Smith Predictor Design by CDM for Temperature Control System

Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.

Abstract:

Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.

Keywords: CDM, Smith Predictor, temperature process

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2433
8136 Fuzzy PID based PSS Design Using Genetic Algorithm

Authors: Ermanu A. Hakim, Adi Soeprijanto, Mauridhi H.P

Abstract:

This paper presents PSS (Power system stabilizer) design based on optimal fuzzy PID (OFPID). OFPID based PSS design is considered for single-machine power systems. The main motivation for this design is to stabilize or to control low-frequency oscillation on power systems. Firstly, describing the linear PID control then to combine this PID control with fuzzy logic control mechanism. Finally, Fuzzy PID parameters (Kp. Kd, KI, Kupd, Kui) are tuned by Genetic Algorthm (GA) to reach optimal global stability. The effectiveness of the proposed PSS in increasing the damping of system electromechanical oscillation is demonstrated in a one-machine-infinite-bus system

Keywords: Fuzzy PID, Genetic Algorithm, power system stabilizer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1748
8135 An Improved Optimal Sliding Mode Control for Structural Stability

Authors: Leila Fatemi, Morteza Moradi, Azadeh Mansouri

Abstract:

In this paper, the modified optimal sliding mode control with a proposed method to design a sliding surface is presented. Because of the inability of the previous approach of the sliding mode method to design a bounded and suitable input, the new variation is proposed in the sliding manifold to obviate problems in a structural system. Although the sliding mode control is a powerful method to reject disturbances and noises, the chattering problem is not good for actuators. To decrease the chattering phenomena, the optimal control is added to the sliding mode control. Not only the proposed method can decline the intense variations in the inputs of the system but also it can produce the efficient responses respect to the sliding mode control and optimal control that are shown by performing some numerical simulations.

Keywords: Structural Control, optimal control, optimal sliding mode controller, modified sliding surface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
8134 Modeling and Control Design of a Centralized Adaptive Cruise Control System

Authors: Markus Mazzola, Gunther Schaaf

Abstract:

A vehicle driving with an Adaptive Cruise Control System (ACC) is usually controlled decentrally, based on the information of radar systems and in some publications based on C2X-Communication (CACC) to guarantee stable platoons. In this paper we present a Model Predictive Control (MPC) design of a centralized, server-based ACC-System, whereby the vehicular platoon is modeled and controlled as a whole. It is then proven that the proposed MPC design guarantees asymptotic stability and hence string stability of the platoon. The Networked MPC design is chosen to be able to integrate system constraints optimally as well as to reduce the effects of communication delay and packet loss. The performance of the proposed controller is then simulated and analyzed in an LTE communication scenario using the LTE/EPC Network Simulator LENA, which is based on the ns-3 network simulator.

Keywords: Adaptive Cruise Control, Centralized Server, Networked Model Predictive Control, String Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2834
8133 A Novel Adaptive Voltage Control Strategy for Boost Converter via Inverse LQ Servo-Control

Authors: Sorawit Stapornchaisit, Sidshchadhaa Aumted, Hiroshi Takami

Abstract:

In this paper, we propose a novel adaptive voltage control strategy for boost converter via Inverse LQ Servo-Control. Our presented strategy is based on an analytical formula of Inverse Linear Quadratic (ILQ) design method, which is not necessary to solve Riccati’s equation directly. The optimal and adaptive controller of the voltage control system is designed. The stability and the robust control are analyzed. Whereas, we can get the analytical solution for the optimal and robust voltage control is achieved through the natural angular velocity within a single parameter and we can change the responses easily via the ILQ control theory. Our method provides effective results as the stable responses and the response times are not drifted even if the condition is changed widely.

Keywords: Boost converter, optimal voltage control, inverse LQ design method, type-1 servo-system, adaptive control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1717
8132 Disturbance Observer-Based Predictive Functional Critical Control of a Table Drive System

Authors: Toshiyuki Satoh, Hiroki Hara, Naoki Saito, Jun-ya Nagase, Norihiko Saga

Abstract:

This paper addresses a control system design for a table drive system based on the disturbance observer (DOB)-based predictive functional critical control (PFCC). To empower the previously developed DOB-based PFC to handle constraints on controlled outputs, we propose to take a critical control approach. To this end, we derive the transfer function representation of the PFC controller and yield a detailed design procedure. The effectiveness of the proposed method is confirmed through an experimental evaluation.

Keywords: Critical control, disturbance observer, mechatronics, motion control, predictive functional control, table drive systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
8131 Landfill Design for Reclamation of Şırnak Coal Mine Dumps: Shalefill Stability and Risk Assessment

Authors: Yıldırım I. Tosun, Halim Cevizci, Hakan Ceylan

Abstract:

By GEO5 FEM program with four rockfill slope modeling and stability analysis was performed for S1, S2, S3 and S4 slopes where landslides of the shalefills were limited. Effective angle of internal friction (φ'°) 17°-22.5°, the effective cohesion (c') from 0.5 to 1.8 kPa, saturated unit weight 1.78-2.43 g/cm3, natural unit weight 1.9-2.35 g/cm3, dry unit weight 1.97-2.40 g/cm3, the permeability coefficient of 1x10-4 - 6.5x10-4 cm/s. In cross-sections of the slope, GEO 5 FEM program possible critical surface tension was examined. Rockfill dump design was made to prevent sliding slopes. Bulk material designated geotechnical properties using also GEO5 programs FEM and stability program via a safety factor determined and calculated according to the values S3 and S4 No. slopes are stable S1 and S2 No. slopes were close to stable state that has been found to be risk. GEO5 programs with limestone rock fill dump through FEM program was found to exhibit stability.

Keywords: Slope stability, GEO5, rockfills, rock stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1905
8130 Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design

Authors: Li Jie, Zhang Wei

Abstract:

In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.

Keywords: Differential drive robots, nonlinear control, Lyapunov-based control design, posture regulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
8129 Calculation of Heating Load for an Apartment Complex with Unit Building Method

Authors: Ju-Seok Kim, Sun-Ae Moon, Tae-Gu Lee, Seung-Jae Moon, Jae-Heon Lee

Abstract:

As a simple to method estimate the plant heating energy capacity of an apartment complex, a new load calculation method has been proposed. The method which can be called as unit building method, predicts the heating load of the entire complex instead of summing up that of each apartment belonging to complex. Comparison of the unit heating load for various floor sizes between the present method and conventional approach shows a close agreement with dynamic load calculation code. Some additional calculations are performed to demonstrate it-s application examples.

Keywords: Unit Building Method, Unit Heating Load, TFMLoad.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3438
8128 Multi-Objective Optimal Design of a Cascade Control System for a Class of Underactuated Mechanical Systems

Authors: Yuekun Chen, Yousef Sardahi, Salam Hajjar, Christopher Greer

Abstract:

This paper presents a multi-objective optimal design of a cascade control system for an underactuated mechanical system. Cascade control structures usually include two control algorithms (inner and outer). To design such a control system properly, the following conflicting objectives should be considered at the same time: 1) the inner closed-loop control must be faster than the outer one, 2) the inner loop should fast reject any disturbance and prevent it from propagating to the outer loop, 3) the controlled system should be insensitive to measurement noise, and 4) the controlled system should be driven by optimal energy. Such a control problem can be formulated as a multi-objective optimization problem such that the optimal trade-offs among these design goals are found. To authors best knowledge, such a problem has not been studied in multi-objective settings so far. In this work, an underactuated mechanical system consisting of a rotary servo motor and a ball and beam is used for the computer simulations, the setup parameters of the inner and outer control systems are tuned by NSGA-II (Non-dominated Sorting Genetic Algorithm), and the dominancy concept is used to find the optimal design points. The solution of this problem is not a single optimal cascade control, but rather a set of optimal cascade controllers (called Pareto set) which represent the optimal trade-offs among the selected design criteria. The function evaluation of the Pareto set is called the Pareto front. The solution set is introduced to the decision-maker who can choose any point to implement. The simulation results in terms of Pareto front and time responses to external signals show the competing nature among the design objectives. The presented study may become the basis for multi-objective optimal design of multi-loop control systems.

Keywords: Cascade control, multi-loop control systems, multi-objective optimization, optimal control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 922
8127 Heterogeneous Artifacts Construction for Software Evolution Control

Authors: Mounir Zekkaoui, Abdelhadi Fennan

Abstract:

The software evolution control requires a deep understanding of the changes and their impact on different system heterogeneous artifacts. And an understanding of descriptive knowledge of the developed software artifacts is a prerequisite condition for the success of the evolutionary process. The implementation of an evolutionary process is to make changes more or less important to many heterogeneous software artifacts such as source code, analysis and design models, unit testing, XML deployment descriptors, user guides, and others. These changes can be a source of degradation in functional, qualitative or behavioral terms of modified software. Hence the need for a unified approach for extraction and representation of different heterogeneous artifacts in order to ensure a unified and detailed description of heterogeneous software artifacts, exploitable by several software tools and allowing to responsible for the evolution of carry out the reasoning change concerned.

Keywords: Heterogeneous software artifacts, Software evolution control, Unified approach, Meta Model, Software Architecture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1798
8126 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools

Authors: Chin-Yin Chen, Chi-Cheng Cheng

Abstract:

This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.

Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1948
8125 Design and Analysis of Electric Power Production Unit for Low Enthalpy Geothermal Reservoir Applications

Authors: Ildar Akhmadullin, Mayank Tyagi

Abstract:

The subject of this paper is the design analysis of a single well power production unit from low enthalpy geothermal resources. A complexity of the project is defined by a low temperature heat source that usually makes such projects economically disadvantageous using the conventional binary power plant approach. A proposed new compact design is numerically analyzed. This paper describes a thermodynamic analysis, a working fluid choice, downhole heat exchanger (DHE) and turbine calculation results. The unit is able to produce 321 kW of electric power from a low enthalpy underground heat source utilizing n-Pentane as a working fluid. A geo-pressured reservoir located in Vermilion Parish, Louisiana, USA is selected as a prototype for the field application. With a brine temperature of 126 , the optimal length of DHE is determined as 304.8 m (1000ft). All units (pipes, turbine, and pumps) are chosen from commercially available parts to bring this project closer to the industry requirements. Numerical calculations are based on petroleum industry standards. The project is sponsored by the Department of Energy of the US.

Keywords: Downhole Heat Exchangers, Geothermal Power Generation, Organic Rankine Cycle, Refrigerants, Working Fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
8124 The Optimal Indirect Vector Controller Design via an Adaptive Tabu Search Algorithm

Authors: P. Sawatnatee, S. Udomsuk, K-N. Areerak, K-L. Areerak, A. Srikaew

Abstract:

The paper presents how to design the indirect vector control of three-phase induction motor drive systems using the artificial intelligence technique called the adaptive tabu search. The results from the simulation and the experiment show that the drive system with the controller designed from the proposed method can provide the best output speed response compared with those of the conventional method. The controller design using the proposed technique can be used to create the software package for engineers to achieve the optimal controller design of the induction motor speed control based on the indirect vector concept.

 

Keywords: Indirect Vector Control, Induction Motor, Adaptive Tabu Search, Control Design, Artificial Intelligence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1933
8123 Design and Instrumentation of a Benchmark Multivariable Nonlinear Control Laboratory

Authors: S. H. Teh, S. Malawaraarachci, W. P. Chan, A. Nassirharand

Abstract:

The purpose of this paper is to present the design and instrumentation of a new benchmark multivariable nonlinear control laboratory. The mathematical model of this system may be used to test the applicability and performance of various nonlinear control procedures. The system is a two degree-of-freedom robotic arm with soft and hard (discontinuous) nonlinear terms. Two novel mechanisms are designed to allow the implementation of adjustable Coulomb friction and backlash.

Keywords: Nonlinear control, describing functions, AdjustableCoulomb friction, Adjustable backlash.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
8122 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF, rate of change of frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2207
8121 Technical Support of Intracranial Single Unit Activity Measurement

Authors: Richard Grünes, Karel Roubik

Abstract:

The article deals with technical support of intracranial single unit activity measurement. The parameters of the whole measuring set were tested in order to assure the optimal conditions of extracellular single-unit recording. Metal microelectrodes for measuring the single-unit were tested during animal experiments. From signals recorded during these experiments, requirements for the measuring set parameters were defined. The impedance parameters of the metal microelectrodes were measured. The frequency-gain and autonomous noise properties of preamplifier and amplifier were verified. The measurement and the description of the extracellular single unit activity could help in prognoses of brain tissue damage recovery.

Keywords: Measuring set, metal microelectrodes, single-unit, noise, impedance parameters, gain characteristics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1535
8120 Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1248