
 

 

  
Abstract—An approach of design of stable of control systems 

with ultimately wide ranges of uncertainly disturbed parameters is 
offered. The method relies on using of nonlinear structurally stable 
functions from catastrophe theory as controllers. Theoretical part 
presents an analysis of designed nonlinear second-order control 
systems. As more important the integrators in series, canonical 
controllable form and Jordan forms are considered. The analysis 
resumes that due to added controllers systems become stable and 
insensitive to any disturbance of parameters. Experimental part 
presents MATLAB simulation of design of control systems of 
epidemic spread, aircraft’s angular motion and submarine depth. The 
results of simulation confirm the efficiency of offered method of 
design. 
 

Keywords—Catastrophes, robust control, simulation, uncertain 
parameters.  

I. INTRODUCTION 
HERE is a lot of methods of design of robust control 
which develop with increasing interest and some of them 

become classical. Commonly all of them are dedicated to 
defining the ranges of parameters (if uncertainty of parameters 
takes place) within which the system will function with 
desirable properties, first of all, will be stable [1,2]. Thus there 
are many researches which successfully attenuate the 
uncertain changes of parameters in small (regarding to 
magnitudes of their own nominal values) ranges. But no one 
existing method can guarantee the stability of designed control 
system at arbitrarily large ranges of uncertainly changing 
parameters of plant. The approach that is offered in the 
present work relies on the results of catastrophe theory 
[3,4,5,6,7],  uses nonlinear structurally stable functions, and 
due to bifurcations of equilibrium points in designed nonlinear 
systems allows to stabilize a dynamic plant with ultimately 
wide ranges of changing of parameters.   

It is known that the catastrophe theory deals with several 
functions which are characterized by their stable structure. 
Today there are many classifications of these functions but 
originally they are discovered as seven basic nonlinearities 
named as ‘catastrophes’: 
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 A part of the catastrophe which does not contain parameters 
ki is called as ‘germ’ of catastrophe. 

Adding any of them to dynamic system as a controller will 
give effect shown below. On the example of the catastrophe 
‘elliptic umbilic’ added to dynamical systems we shall see 
that: 

1) new (one or several) equilibrium point appears so 
there are at least two equilibrium point in new 
designed system, 

2) these equilibrium points are stable but not 
simultaneous, i.e. if one exists (is stable) then another  
does not exist (is unstable), 

3) stability of the equilibrium points are determined by 
values or relations of values of parameters of the 
system,   

4) what value(s) or what relation(s) of values of 
parameters would not be, every time there will be one 
and only one stable equilibrium point to which the 
system will attend and thus be stable.  

Let us consider the cases of second-order systems (1) and 
examples of design of control systems (2) of epidemic spread 
(2-1), aircraft’s angular motion (2-2) and submarine depth (2-
3).   

II. SECOND ORDER SYSTEMS 
A. Integrators in series. Let us consider a control plant 

presented by two integrators connected in series, as shown in 
Fig. 1: 

 
      u                     x2                  x1=y

ST2

1
ST1

1  

 
Fig. 1 “Integrators in series” structure 

 
where T1 and T2 are the parameters of integration. This 
structure is famous of its instability, i.e. no one linear 
controller can provide the stability to such system and more 
over with uncertainly changeable parameters [8,9].  
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 Let us choose a feedback control law as following form: 
( ) 1322

2
2

2
11

2
12

3
2 3 xkxkxxkxxxu +++−+−= ,              (1) 

 
and in order to study stability of the system let us suppose that 
there is no input signal in the system (equal to zero) [10]. 
Hence, the system with proposed controller can be presented 
as: 
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Tdt
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x
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         (2) 

1xy = . 
 

The system (2) has following equilibrium points 
 

01
1 =sx , 01

2 =sx ;                                  (3) 

1

32
1 k

kx s = , 02
2 =sx .                                 (4) 

 
 Stability conditions for equilibrium point (3) obtained via 
linearization are 
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Stability conditions of the equilibrium point (4) are 
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By comparing the stability conditions given by (5) and (6) 

we find that the signs of the expressions in the second 
inequalities are opposite. Also we can see that the signs of 
expressions in the first inequalities can be opposite due to 
squares of the parameters k1 and k3 if we properly set their 
values. 

Let us suppose that parameter T1 can be perturbed but 
remains positive. If we set k2 and k3 both negative and 

2
1

2
3

2 3
k
kk <  then the value of parameter T2 is irrelevant. It can 

assume any values both positive and negative (except zero), 
and the system given by (2) remains stable. If T2 is positive 
then the system converges to the equilibrium point (3)  
(becomes stable). Likewise, if T2 is negative then the system 
converges to the equilibrium point (4) which appears 
(becomes stable). At this moment the equilibrium point (3) 
becomes unstable (disappears). 

Let us suppose that T2 is positive, or can be perturbed 
staying positive. So if we can set the k2 and k3 both negative 
and 

2
1

2
3

2 3
k
kk >  then it does not matter what value (negative or 

positive) the parameter T1 would be (except zero), in any case 
the system (2) will be stable. If T1 is positive then equilibrium 
point (3) appears (becomes stable) and equilibrium point (4) 
becomes unstable (disappears) and vice versa, if T1 is negative 
then equilibrium point (4) appears (become stable) and 
equilibrium point (3) becomes unstable (disappears). 

Results of MatLab simulation for the first and second cases 
are presented in Fig. 2 and 3 respectively. In both cases we see 
how phase trajectories converge to equilibrium points ( )0,0  

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0;

1

3

k
k

. In the Fig. 2 the phase portrait of the system (2) 

at constant k1=1, k2=-5, k3=-2, T1=100 and various 
(perturbed) T2 (from -4500 to 4500 with step 1000) with 
initial condition x=(-1;0) is shown. In the Fig. 3 the phase 
portrait of the system (2) at constant k1=2, k2=-3, k3=-1, 
T2=1000 and various (perturbed) T1 (from -450 to 450 with 
step 100) with initial condition x=(-0.25;0) is shown.  
 

 
Fig. 2 Behavior of designed control system in the case of integrators 

in series at various T2 

 

 
 Fig. 3 Behavior of designed control system in the case of integrators 

in series at various T1 
 

Another two forms, canonical controllable form and Jordan 
form are important because we can reduce any linear matrix of 
control plant to any of them. 
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B. Canonical controllable form (CCF). This form is 
important if we would like to affect to the last term of 
characteristic polynomial an which corresponds to general 
gain of the system.  

Let us consider the second order system which is identical 
to CCF: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

−−=

=

.

,

2112
2

2
1

xaxa
dt

dx

x
dt
dx

 

1xy = . 
 

It is known that the system will be stable if and only if the 
parameters a1 and a2 are positive. If for example the small 
perturbation will make the a2 negative then system will 
become unstable.  

Let us set the control law in the form (1). Hence we will 
obtain the following equations of designed control system. 
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⎨

⎧

+++−+−−−=

=
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,
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2
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2
12
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2
1

xkxkxxkxxxxaxa
dt
dx

x
dt
dx

 

1xy = .                                        (7) 
 
 The system (7) has following equilibrium points: 
 

01
1 =sx , 01

2 =sx ;                                 (8) 

1

232
1 k

akx s

−
= , 02

2 =sx ;                             (9) 

 
Stability conditions for equilibrium points (8) and (9) 

respectively are: 
 

⎩
⎨
⎧

>−
>−

.0
,0

32

21

ka
ka

                                    (10) 
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>
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2
23

21

ak
k
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                          (11) 

 
From inequalities (10) and (11) it is easy to see that here it 

does not matter what value except zero parameter a2 will be. 
Similar to above we can resume that system (7) will be stable.  

In the Fig. 4 the motion of the system (7) at constant control 
parameters k1=4, k2=-4, k3=-6, constant plant parameter a1=1 
and various values of plant parameter a2 which varies from -
9.5 to 9.5 with step 1.0, with initial condition x=(0.05;0)  is 
shown. 

 
Fig. 4 Behavior of designed control system in the case of CCF 

 
C. Jordan form. Let us consider the model of second order 

system which corresponds to Jordan form, i.e. it is a diagonal 
matrix with eigenvalues as parameters. 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=

=

.

,

22
2

11
1

x
dt
dx

x
dt
dx

ρ

ρ
                                     (12)           

 
Due to an absence of the relationship between the phase 

coordinates here we can control each phase coordinate 
separately and choose the control law in simplified form (as 
we said without germ).  

Let us choose the control law in the simplified form of 
elliptic umbilic catastrophe without germ and merging the 
control parameters: 
 

1
2
11 xkxku ba +−= , 2

2
22 xkxku ca +−=                   (13) 

 
Hence, the system (12) with set control (13) is: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+−=

+−=

.

,

2
2
222

2

1
2
111

1

xkxkx
dt
dx

xkxkx
dt
dx

ca

ba

ρ

ρ
                            (14) 

 
Nonlinear control system (14) has the following 

equilibrium points: 
 

01
1 =sx , 01

2 =sx ;                                    (15)                   

02
1 =sx , 

a

c
s k

kx +
= 22

2

ρ ;                                (16) 

a

b
s k

kx +
= 13

1

ρ , 03
2 =sx                                 (17) 

a

b
s k

kx +
= 14

1

ρ , 
a

c
s k

kx +
= 24

2

ρ ;                           (18) 

 
Stability conditions for the equilibrium point (15) are: 
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ρ

                                  (19) 

 
Stability conditions for the equilibrium point (16) are: 
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ρ

                                  (20) 

 
Stability conditions for the equilibrium point (17) are: 

 

⎩
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ρ

                                  (21) 

 
Stability conditions for the equilibrium point (18) are: 

 

⎩
⎨
⎧

<+
<+

.0
,0

2

1

c

b

k
k

ρ
ρ

                                  (22) 

 
From inequalities (19-22) it is easy to see that here it does 

not matter what values except zero parameters ρ1 and ρ2 will 
be. After any perturbations whatever value except zero this 
pair would not be, every time there is one and only one of the 
equilibrium points (15-18) to which the system will attend and 
at that moment all another equilibrium points will be unstable 
or will not exist.  

In the Fig. 5 the motion of the system (14) at constant 
control parameters ka=2 and kb= kc =5 and plant various 
parameters m1 and m2 (ρ1 and ρ2) which vary from -1250 to 
1250 with step 500, with initial condition x=(50;50) is shown. 

 

 
Fig. 5 Behavior of designed control system in the case of Jordan form 

III. EXAMPLES OF DESIGN OF CONTROL SYSTEMS 
A. Epidemic spread. The spread of an epidemic disease 

can be described by a set of differential equations. The 
population under study is made up of three groups, x1, x2 and 
x3, such that the group x1 is susceptible to the epidemic 
disease, group x2 is infected with the disease, and group x3 has 
been removed from the initial population. The removal of x3 
will be due to immunization, death, or isolation from x1. The 
output of this system is the state variable x3. The plant can be 
represented by following equations [10]: 

 

⎪
⎪
⎪

⎩
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⎨
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xx
dt
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xx
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xx
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γα

γβ

βα

                               (23) 

 
Let us assume that the population is closed, i.e. the rate at 

which susceptibles added to the population is equal to 0 and 
the rate at which new infectives are added to the population is 
equal 0. 

Let us choose the control law in simplified form of 
catastrophe ‘elliptic umbilic’ without its germ: 

 

( ) 2332
2
2

2
31 xkxkxxku +++−= , 

⎟
⎟
⎟
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⎞
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⎜
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⎛
=

0
1
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B                  (24) 

Hence, the system (19) with the offered control is: 
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xx
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γβ
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             (25) 

 
Hence, the system (20) has two equilibrium points: 

 
01 =x , 02 =x , 03 =x ;                              (26) 

 

01 =x , 02 =x , 
1

2
3 k

kx = .                             (27) 

 
Stability conditions of equilibrium point (21) are: 

 

( ) ( )( ) ( )
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 Stability conditions of equilibrium point (22) are: 
 

( ) ( )( ) ( )
( )⎪

⎩

⎪
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>−−
>−+++−−+

>−+

.0
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2
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k
kkkk

k
     (29) 

 
Here we see the opposite not only for some parameter but 

for relations of several parameters. To compare the stability 
with and without offered controller let us see the Figs. 6 and 
7.  

Fig. 6 presents the output behavior of the system (23) at 
constant value α=1 and various values of parameters β and γ  
which vary from 4 to 6 with step 2.  
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In the Fig. 7 the output behavior of the system (25) at 
constant value α=1 and various values of parameters β and γ  
which vary from 4 to 6 with step 2 is shown.  

As it is proposed the output of the system (25) attends to 
the values of the equilibrium points depending on the values 
of parameters  β and γ , staying every time stable. 

 

 
Fig. 6 Behavior of the epidemic spread at various parameters without 

controller 

 
Fig. 7 Behavior of the epidemic spread at various parameters with 

controller 
 
B. Aircraft’s angular motion. Let us consider the 

dynamics of aircraft’s angular motion. Often it has a quite 
complicated structure and usually is described by high-order 
system of nonlinear differential equations [8,9]. But 
commonly it is possible to isolate a dynamical subsystem 
which variables and parameters characterize the angles and 
their relations in attitude of a flight direction as it is shown in 
the Fig.8 where angle of attack, tilt angle, pitch angle, ground 
speed, and elevator control signal  are denoted as α, θ, ϑ, V, 
and aδ  respectively [9].  

Dynamics of aircraft’s isolated angular motion is described 
by the following differential equations: 
 

.
,

Cxy
BuAxx

=
+=

                                                                                                                  

 
where the matrices A, B and C have the following (nominal) 
values: 
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−−
−

=
010

0
αωα

αα

z

z

zz mmm

yy

aaa
aa

A , 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

0

0
a

zmaB δ , ( )100=C ,     (30) 

with the following nominal parameters: 
 

[ ]1   10.2 −−= say
α , [ ]2   4.29 −= sa

zm
α , [ ]1   18.2 −= sa z

zm
ω , 

[ ]2   7.60 −= sa a

zm
δ , ( )tu aδ=  

 
Fig. 8 Aircraft’s motion characteristics 

 
If we assume the input ( ) 0== consttaδ  and study the 

dynamic plant (1) for stability then we see that it is in the 
stability threshold and not sufficient for engineering practice.  
 Let us choose controller in the following form: 
 

( )( )2332
2
2

2
31

2

1 xkxkxxk
b

u −−+−= .                   (31)                   

 
Thus, the system (30) with the added controller (31) will 

become: 
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⎪
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3

2
3

2332
2
2

2
31321

2

31
1

xy

x
dt
dx

xkxkxxkxaxaxa
dt
dx

xaxa
dt
dx

z

z

zz mmm

yy

αωα

αα

   (32) 

 
New nonlinear control system (32) has two equilibrium 

points: 
 

01 =x , 02 =x , 03 =x ;                             (33) 

1

2
31 k

kxx == , 02 =x .                              (34) 

 
Stability conditions for the equilibrium point (33) are: 
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        (35) 

 
Stability conditions for equilibrium point (34) are: 
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         (36) 

 
If we draw attention to the last two inequalities in both 

stability conditions (35) and (36) then we can note the 
opposite requirements for the sign of the parameter α

ya . Let us 

assume that the parameter  α
ya  satisfies the stability conditions 

of one of the equilibrium points, i.e. the system converges to 
that. If after some uncertain perturbation value of the 
parameter  α

ya  is changed such that sign of it becomes 
opposite then although the current equilibrium point will 
become unstable or disappear (new value will not satisfy the 
current stability conditions), another equilibrium point will 
appear (become stable) because that new value of parameter 
will automatically satisfy the stability conditions of another 
equilibrium point. IOW it does not matter for the stability of 
the system (32) what value except zero the parameter α

ya  
would be, in any case the system (32) will be stable. 

Let us see the results of MATLAB simulation where one 
and several parameters varied their values and the system 
changed phase trajectories but stayed stable.  

The Fig. 9 shows the output behavior of the system with 
added controller at the constant values of the parameters of 
plant α

zma =29.4 and z

zmaω =2.18, parameter of input a

zmaδ =60.7  
and parameters of control k1=0.1, k2=0.3, k3=0.7 (the values 
of parameters are chosen arbitrarily) and at the various values 
of parameter of the plant α

ya  varied from -5.6 to 1.4 with step 
0.5 and constant input ( ) 1== consttaδ . 

 

 
Fig. 9 Behavior of the designed control system of aircraft’s 

angular motion at various α
ya  

  
In the Fig. 10 the output behavior of the system with added 

controller at the constant values of the parameters of control 
k1=1, k2=3, k3=7 (the values of parameters are chosen 
arbitrarily), parameter of input a

zmaδ =60.7 and at the various 

values of all parameters of the plant α
ya ,  α

zma  and z

zmaω  varied 

from -4.1, 9.4 and 0.18 to -0.1, 49.4 and 4.18 (deviations from 
the nominal values) with steps 1, 10 and 1 respectively and 
constant input ( ) 1== consttaδ  is shown. 

  

 
 

Fig. 10 Behavior of the designed control system of aircraft’s angular 
motion at various α

ya ,  α

zma  and z

zmaω  

 
C. Submarine depth control. Let us consider dynamics of 

angular motion of a controlled submarine which is different 
from the aircraft [10]. This difference results primarily from 
the moment in the vertical plane due to the buoyancy effect. 
The important vectors of submarine’s motion are shown in the 
Fig. 11.  

 

 
 

Fig. 11 Angles of submarine’s depth dynamics 
 

Let us assume that θ is a small angle and the velocity v is 
constant and equal to 25 ft/s. The state variables of the 
submarine, considering only vertical control, are x1 = θ, 

dt
dx θ

=2 , x3 = α, where  α is the angle of attack and output. 

Thus the state vector differential equation for this system, 
when the submarine has an Albacore type hull, is: 

 
( )tBAxx sδ+= ,                                (37) 

where  
 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3332

232221

12

0

00

aa
aaa

a
A , 

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

3

2

0

b
bB ,  

 
parameters of the matrices are equal to: 
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112 =a , 0071.021 −=a , 111.022 −=a , 12.023 =a , 07.032 =a , 
3.033 −=a ,  

095.02 −=b , 072.03 =b , 
 

and δs(t) is the deflection of the stern plane.  
Let us study the behavior of the system (37). In general 

form it is described as:  
 

( )

( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

++=

+++=

=

.

,

,

3333232
3

2323222121
2

2
1

tbxaxa
dt
dx

tbxaxaxa
dt

dx

x
dt
dx

S

S

δ

δ                     (38) 

 

where input δs(t)=1. By turn let us simulate by MATLAB the 
changing of the value of each parameter deviated from 
nominal value.   
 In the Fig. 12 the behavior of the system (38) at various 
value of 21a  (varies from -0.0121 to 0.0009 with step 
0.00125) and all left constant parameters with nominal values 
is presented.  
 In the Fig. 13 the behavior of the system (38) at various 
value of 22a  (varies from -0.611 to 0.289 with step 0.125) and 
all left constant parameters with nominal values is presented.  
 In the Fig. 14 the behavior of the system (38) at various 
value of 23a  (varies from -0.88 to 1.120 with step 0.2) and all 
left constant parameters with nominal values is presented.  
 In the Fig. 15 the behavior of the system (38) at various 
value of 32a  (varies from -0.43 to 0.57 with step 0.125) and all 
left constant parameters with nominal values is presented.  
 In the Fig. 16 the behavior of the system (38) at various 
value of 33a  (varies from -1.3 to 0.7 to with step 0.25) and all 
left constant parameters with nominal values is presented.  
 

 
Fig. 12 Behavior of the dynamics of submarine’s depth at various a21 

 
Fig. 13 Behavior of the dynamics of submarine’s depth at various a22 

 

 
Fig. 14 Behavior of the dynamics of submarine’s depth at various a23       

                                     

 
Fig. 15 Behavior of the dynamics of submarine’s depth at various a32 
 

 
Fig. 16 Behavior of the dynamics of submarine’s depth at various a33 

 
It is clear that the perturbation of only one parameter makes 

the system unstable.  
Let us set the feedback control law in the following form: 
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( ) 2332
2
2

2
31 xkxkxxku +++−= .                         (39) 

 
Hence, designed control system is: 

 

( )

( ) ( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

+++−++=

+++=

=

.

,

,

2332
2
3

2
213333232

3

2323222121
2

2
1

xkxkxxktbxaxa
dt
dx

tbxaxaxa
dt

dx

x
dt
dx

S

S

δ

δ   (40) 

 
The results of MATLAB simulation of the control system 

(40) with each changing (disturbed) parameter are presented 
in the Figs. 17, 18, 19, 20, and 21. 

In the Fig. 17 the behavior designed control system (40) at 
various value of 21a  (varies from -0.0121 to 0.0009 with step 
0.00125) and all left constant parameters with nominal values 
is presented  

In the Fig. 18 the behavior of the system (40) at various 
value of 22a  (varies from -0.611 to 0.289 with step 0.125) and 
all left constant parameters with nominal values is presented.  
 In the Fig. 19 the behavior of the system (40) at various 
value of 23a  (varies from -0.88 to 1.120 with step 0.2) and all 
left constant parameters with nominal values is presented.  
 In the Fig. 20 the behavior of the system (40) at various 
value of 32a  (varies from -0.43 to 0.57 with step 0.125) and all 
left constant parameters with nominal values is presented.  

In the Fig. 21 the behavior of the system (40) at various 
value of 33a  (varies from -1.3 to 0.7 to with step 0.25) and all 
left constant parameters with nominal values are presented. 

 

 
Fig. 17 Behavior of the submarine depth control system at various a21 

 

 
Fig. 18 Behavior of the submarine depth control system at various a22 

 

 
Fig. 19 Behavior of the submarine depth control system at various a23 

 

 
Fig. 20 Behavior of the submarine depth control system at various a32 

 
Fig. 21 Behavior of the submarine depth control system at various a33 

IV. CONCLUSION 
Resuming we can conclude that using structurally stable 

functions from catastrophe theory as controllers give many 
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advantages. The main of them is that the safe ranges of 
parameters are widened significantly because the designed 
system stay stable within unbounded ranges of perturbation of 
parameters even the sign of them changes. The behaviors of 
designed control systems obtained by MATLAB simulation 
such that control of epidemic spread, aircraft’s angular motion 
and submarine depth confirm the efficiency of the offered 
method. The offered approach of design can be applied not 
only for linear but also for some set or class of nonlinear 
dynamic plants. For further research and investigation many 
perspective tasks can occur such that synthesis of control 
systems with special requirements, design of optimal control, 
control of chaos, etc.  
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