Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30124
Aerobic Bioprocess Control Using Artificial Intelligence Techniques

Authors: M. Caramihai, Irina Severin

Abstract:

This paper deals with the design of an intelligent control structure for a bioprocess of Hansenula polymorpha yeast cultivation. The objective of the process control is to produce biomass in a desired physiological state. The work demonstrates that the designed Hybrid Control Techniques (HCT) are able to recognize specific evolution bioprocess trajectories using neural networks trained specifically for this purpose, in order to estimate the model parameters and to adjust the overall bioprocess evolution through an expert system and a fuzzy structure. The design of the control algorithm as well as its tuning through realistic simulations is presented. Taking into consideration the synergism of different paradigms like fuzzy logic, neural network, and symbolic artificial intelligence (AI), in this paper we present a real and fulfilled intelligent control architecture with application in bioprocess control.

Keywords: Bioprocess, intelligent control, neural nets, fuzzy structure, hybrid techniques.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1129914

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769

References:


[1] Bastin, G. Comp. App. Ferm. Techn. Model. Contr. Biotech. Proc., N. M. Fish, R. I. Fox & N. F. Thornhill (Ed.), Elsevier Sci. Publ., Amsterdam, Holland, p.331, 1988.
[2] Bastin, G., Dochain, D. On line Estim. Adap. Contr. Bioreac., Esevier Sci. Publ., Amsterdam, Holland, 1990.
[3] Chen L., Bastin, G., Adapt. Nonlinear Regul. Fed-Batch Biol. React., Tech. Rep., 1991.
[4] Ferreira, E. C., Feyo de Azevedo, S. UKACC Int. Conf. Control’96, Conf. Publ. 427, p.1184, 1996.
[5] Dumitrache, I. Model & Contr. Bioprocess. IMACS Symp., 2, p.10, Brussels, 2013.
[6] Pokkinen, M., Oinas, R., Hamaker, E., Saari, A., Model. Contr. Biotechn. Proc., M. N. Karim, G. Stepphanopoulos (Ed.), Pergamon Press, Oxford, p.461, 1992.
[7] Nosrati, R., Fonteix, C., Recents progres en genie des procedees, Ed. Lavoisier, France, 5, p.275, 1991.
[8] Caramihai, M. Intelligent Bioprocess Control, Ph.D. Thesis, UPB, 1997.
[9] Moser, A. Bioprocess Technology, Springer Verlag, Berlin, Germany, p.113, 1988.
[10] Williams, F. M. Sys. Anal. Simul. Ecol., Pattern, B. V. (Ed.), Academic Press, New York, 7, cap.3, 1975.
[11] Kokotovici, P., Khalil, H. K., Reilly, J. O. Sing. Perturb. Meth. Contr. Anal. Design, 1986, Academic Press, London, England.
[12] Stanbury, P. F., Whitaker, A. Princ. Fermen. Techn., Pergamon Press, Oxford, 2001
[13] Chirvase, A. A., Marica, E. Air-lift Bioreac. Microb. Cult., Working Party Bioreactor Perf., p.125, Albarella, Italy, 1992
[14] Gaden Jr., E. L. J. Biochem. Microbiol. Technol. Eng., 1, p.413, 1959.
[15] Geyson, H. M., Gray, P. Biotechnol. Bioeng., 14, p.857, 1972
[16] Shuler, M. L. Comprenhensive Biotechnol., Moo-Young, M. (Ed.), Pergamon Press, New York, 2, 1985.
[17] Webb, J. L. Enz. Metab. Inh., Academic Press, New York, 1, 1963.
[18] Caramihai, M., Chirvase, A.A., Marica, E., Muntean, Ov. 6th Intern. Conf. Comp. Appl. Biotech. =CAB 6=, Garmisch-Partenkirchen, Germany, p.57, 14-17 May 1995
[19] Caramihai, M., Jecu, L. 10th Intern. Biodet. Biodegr. Symp., 133, p.695, 15-18 Sep. 1996, Hamburg/Germany.
[20] Dumitrache, I., Caramihai, M., Modeling and Control of Specific Fermentation with Fungi, 8th Europ. Congr. Biotech., 17-21 August 2008, Budapest, Hungary.