Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32451
An Approach to Control Design for Nonlinear Systems via Two-stage Formal Linearization and Two-type LQ Controls

Authors: Kazuo Komatsu, Hitoshi Takata


In this paper we consider a nonlinear control design for nonlinear systems by using two-stage formal linearization and twotype LQ controls. The ordinary LQ control is designed on almost linear region around the steady state point. On the other region, another control is derived as follows. This derivation is based on coordinate transformation twice with respect to linearization functions which are defined by polynomials. The linearized systems can be made up by using Taylor expansion considered up to the higher order. To the resulting formal linear system, the LQ control theory is applied to obtain another LQ control. Finally these two-type LQ controls are smoothly united to form a single nonlinear control. Numerical experiments indicate that this control show remarkable performances for a nonlinear system.

Keywords: Formal Linearization, LQ Control, Nonlinear Control, Taylor Expansion, Zero Function.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528


[1] R. W. Brockett, "Feedback Invariants for Nonlinear Systems," in Proc. of IFAC Congress, Helsinki, 1978, pp.1115-1120.
[2] B. Jakubczyk and W. Respondek, "On the Linearization of Control Systems," Bull. Acad. Polon. Sci. Ser. Math., Vol.28, pp.517-522, 1980.
[3] A. J. Krener, "Approximate Linearization by State Feedback and Coordinate Change," Systems and Control Letters, Vol.5, pp.181-185, 1984.
[4] R. Marino, "On the Largest Feedback Linearizable Subsystem," Systems and Control Letters, Vol.6, pp.345-351, 1986.
[5] R. R. Kadiyala, "A Tool Box for Approximate Linearization on Nonlinear Systems," IEEE Control Systems, Vol.13, No.2, pp.47-57, 1993.
[6] A. Ishidori, Nonlinear Control Systems, An Introduction, 3rd ed., Berlin: Springer-Verlag, 1995.
[7] H. K. Khalil, Nonlinear Systems, 3rd ed., New Jersey: Prentice Hall, 2002.
[8] W. T. Baumann and W. J. Rugh, "Feedback Control of Nonlinear Systems by Extended Linearization," IEEE Trans., AC-31, 1, pp.40-46, 1986.
[9] H. Takata," Transformation of a Nonlinear System into an Augmented Linear System," IEEE Trans. on Automatic Control, Vol.AC-24, No.5, pp.736-741, 1979.
[10] K. Komatsu and H. Takata, "A Computation Method of Formal Linearization for Time-Variant Nonlinear Systems via Chebyshev Interpolation," in Proc. of the IEEE CDC, Las Vegas, 2002, pp.4173-4178.
[11] K. Komatsu and H. Takata, "Computer Algorithms of Formal Linearization and Estimation for Time-Variant Nonlinear Systems via Chebyshev Expansion," Journal of Signal Processing, Vol.7, No.1, pp.23-29, 2003.
[12] K. Komatsu and H. Takata, "A Formal Linearization for a General Class of Time-Varying Nonlinear Systems and Its Applications," IEICE Trans. , Vol.E87-A, No.9, pp.2203-2209, 2004.
[13] K. Komatsu and H. Takata, "Design of Formal Linearization and Observer for Time-Delay Nonlinear Systems," in Proc. of NOLTA, Italy, 2006, pp.907-910.
[14] A. P. Sage and C. C. White III, Optimum Systems Control, 2nd ed., New Jersey:Prentice Hall, 1977.