Search results for: Experimental and numerical modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6867

Search results for: Experimental and numerical modeling

957 2D Spherical Spaces for Face Relighting under Harsh Illumination

Authors: Amr Almaddah, Sadi Vural, Yasushi Mae, Kenichi Ohara, Tatsuo Arai

Abstract:

In this paper, we propose a robust face relighting technique by using spherical space properties. The proposed method is done for reducing the illumination effects on face recognition. Given a single 2D face image, we relight the face object by extracting the nine spherical harmonic bases and the face spherical illumination coefficients. First, an internal training illumination database is generated by computing face albedo and face normal from 2D images under different lighting conditions. Based on the generated database, we analyze the target face pixels and compare them with the training bootstrap by using pre-generated tiles. In this work, practical real time processing speed and small image size were considered when designing the framework. In contrast to other works, our technique requires no 3D face models for the training process and takes a single 2D image as an input. Experimental results on publicly available databases show that the proposed technique works well under severe lighting conditions with significant improvements on the face recognition rates.

Keywords: Face synthesis and recognition, Face illumination recovery, 2D spherical spaces, Vision for graphics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1738
956 Influence of Machining Process on Surface Integrity of Plasma Coating

Authors: T. Zlámal, J. Petrů, M. Pagáč, P. Krajkovič

Abstract:

For the required function of components with the thermal spray coating, it is necessary to perform additional machining of the coated surface. The paper deals with assessing the surface integrity of Metco 2042, a plasma sprayed coating, after its machining. The selected plasma sprayed coating serves as an abradable sealing coating in a jet engine. Therefore, the spray and its surface must meet high quality and functional requirements. Plasma sprayed coatings are characterized by lamellar structure, which requires a special approach to their machining. Therefore, the experimental part involves the set-up of special cutting tools and cutting parameters under which the applied coating was machined. For the assessment of suitably set machining parameters, selected parameters of surface integrity were measured and evaluated during the experiment. To determine the size of surface irregularities and the effect of the selected machining technology on the sprayed coating surface, the surface roughness parameters Ra and Rz were measured. Furthermore, the measurement of sprayed coating surface hardness by the HR 15 Y method before and after machining process was used to determine the surface strengthening. The changes of strengthening were detected after the machining. The impact of chosen cutting parameters on the surface roughness after the machining was not proven.

Keywords: Machining, plasma sprayed coating, surface integrity, strengthening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
955 Removal of Hydrogen Sulfide in Terms of Scrubbing Techniques using Silver Nano-Particles

Authors: SeungKyu Shin, Jeong Hyub Ha, Sung Han, JiHyeon Song

Abstract:

Silver nano-particles have been used for antibacterial purpose and it is also believed to have removal of odorous compounds, oxidation capacity as a metal catalyst. In this study, silver nano-particles in nano sizes (5-30 nm) were prepared on the surface of NaHCO3, the supporting material, using a sputtering method that provided high silver content and minimized conglomerating problems observed in the common AgNO3 photo-deposition method. The silver nano-particles were dispersed by dissolving Ag-NaHCO3 into water, and the dispersed silver nano-particles in the aqueous phase were applied to remove inorganic odor compounds, H2S, in a scrubbing reactor. Hydrogen sulfide in the gas phase was rapidly removed by the silver nano-particles, and the concentration of sulfate (SO4 2-) ion increased with time due to the oxidation reaction by silver as a catalyst. Consequently, the experimental results demonstrated that the silver nano-particles in the aqueous solution can be successfully applied to remove odorous compounds without adding additional energy sources and producing any harmful byproducts

Keywords: Silver nano-particles, Scrubbing, Oxidation, Hydrogen sulfide, Ammonia

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2387
954 Labview-Based System for Fiber Links Events Detection

Authors: Bo Liu, Qingshan Kong, Weiqing Huang

Abstract:

With the rapid development of modern communication, diagnosing the fiber-optic quality and faults in real-time is widely focused. In this paper, a Labview-based system is proposed for fiber-optic faults detection. The wavelet threshold denoising method combined with Empirical Mode Decomposition (EMD) is applied to denoise the optical time domain reflectometer (OTDR) signal. Then the method based on Gabor representation is used to detect events. Experimental measurements show that signal to noise ratio (SNR) of the OTDR signal is improved by 1.34dB on average, compared with using the wavelet threshold denosing method. The proposed system has a high score in event detection capability and accuracy. The maximum detectable fiber length of the proposed Labview-based system can be 65km.

Keywords: Empirical mode decomposition (EMD), events detection, Gabor transform, optical time domain reflectometer (OTDR), wavelet threshold denoising.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
953 Keyloggers Prevention with Time-Sensitive Obfuscation

Authors: Chien-Wei Hung, Fu-Hau Hsu, Chuan-Sheng Wang, Chia-Hao Lee

Abstract:

Nowadays, the abuse of keyloggers is one of the most widespread approaches to steal sensitive information. In this paper, we propose an On-Screen Prompts Approach to Keyloggers (OSPAK) and its analysis, which is installed in public computers. OSPAK utilizes a canvas to cue users when their keystrokes are going to be logged or ignored by OSPAK. This approach can protect computers against recoding sensitive inputs, which obfuscates keyloggers with letters inserted among users' keystrokes. It adds a canvas below each password field in a webpage and consists of three parts: two background areas, a hit area and a moving foreground object. Letters at different valid time intervals are combined in accordance with their time interval orders, and valid time intervals are interleaved with invalid time intervals. It utilizes animation to visualize valid time intervals and invalid time intervals, which can be integrated in a webpage as a browser extension. We have tested it against a series of known keyloggers and also performed a study with 95 users to evaluate how easily the tool is used. Experimental results made by volunteers show that OSPAK is a simple approach.

Keywords: Authentication, computer security, keylogger, privacy, information leakage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 751
952 Spectral Entropy Employment in Speech Enhancement based on Wavelet Packet

Authors: Talbi Mourad, Salhi Lotfi, Chérif Adnen

Abstract:

In this work, we are interested in developing a speech denoising tool by using a discrete wavelet packet transform (DWPT). This speech denoising tool will be employed for applications of recognition, coding and synthesis. For noise reduction, instead of applying the classical thresholding technique, some wavelet packet nodes are set to zero and the others are thresholded. To estimate the non stationary noise level, we employ the spectral entropy. A comparison of our proposed technique to classical denoising methods based on thresholding and spectral subtraction is made in order to evaluate our approach. The experimental implementation uses speech signals corrupted by two sorts of noise, white and Volvo noises. The obtained results from listening tests show that our proposed technique is better than spectral subtraction. The obtained results from SNR computation show the superiority of our technique when compared to the classical thresholding method using the modified hard thresholding function based on u-law algorithm.

Keywords: Enhancement, spectral subtraction, SNR, discrete wavelet packet transform, spectral entropy Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1969
951 Optimization of Enzymatic Hydrolysis of Manihot Esculenta Root Starch by Immobilizeda-Amylase Using Response Surface Methodology

Authors: G. Baskar, C. Muthukumaran, S. Renganathan

Abstract:

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of cassava (Manihot esculenta) starch powder (of mesh 80/120) into glucose syrup by immobilized (using Polyacrylamide gel) a-amylase using central composite design. The experimental result on enzymatic hydrolysis of cassava starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of cassava starch by a-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p < 0.01). The optimum value of starch concentration temperature, time and enzyme concentration were found to be 4.5% (w/v), 45oC, 150 min, and 1% (w/v) enzyme. The maximum glucose yield at optimum condition was 5.17 mg/mL.

Keywords: Enzymatic hydrolysis, Alcoholic beverage, Centralcomposite design, Polynomial model, glucose yield.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
950 Characterization of Electrohydrodynamic Force on Dielectric-Barrier-Discharge Plasma Actuator Using Fluid Simulation

Authors: Hiroyuki Nishida, Taku Nonomura, Takashi Abe

Abstract:

Wall-surface jet induced by the dielectric barrier discharge (DBD) has been proposed as an actuator for active flow control in aerodynamic applications. Discharge plasma evolution of the DBD plasma actuator was simulated based on a simple fluid model, in which the electron, one type of positive ion and negative ion were taken into account. Two-dimensional simulation was conducted, and the results are in agreement with the insights obtained from experimental studies. The simulation results indicate that the discharge mode changes depending on applied voltage slope; when the applied voltage is positive-going with high applied voltage slope, the corona-type discharge mode turns into the streamer-type discharge mode and the threshold voltage slope is around 300 kV/ms in this simulation. The characteristics of the electrohydrodynamic (EHD) force, which is the source of the wall-surface jet, also change depending on the discharge mode; the tentative peak value of the EHD force during the positive-going voltage phase is saturated by the periodical formation of the streamer-type discharge.

Keywords: Dielectric barrier discharge, Plasma actuator, Fluid simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2449
949 Experimental Investigations on Nanoclay (Cloisite-15A) Modified Bitumen

Authors: Ashish Kumar, Sanjeev Kumar Suman

Abstract:

This study investigated the influence of Cloisite-15A nanoclay on the physical, performance, and mechanical properties of bitumen binder. Cloisite-15A was blended in the bitumen in variegated percentages from 1% to 9% with increment of 2%. The blended bitumen was characterized using penetration, softening point, and dynamic viscosity using rotational viscometer, and compared with unmodified bitumen equally penetration grade 60/70. The rheological parameters were investigated using Dynamic Shear Rheometer (DSR), and mechanical properties were investigated by using Marshall Stability test. The results indicated an increase in softening point, dynamic viscosity and decrease in binder penetration. Rheological properties of bitumen increase complex modulus, decrease phase angle and improve rutting resistances as well. There was significant improvement in Marshall Stability, rather marginal improvement in flow value. The best improvement in the modified binder was obtained with 5% Cloisite-15A nanoclay.

Keywords: Cloisite-15A, complex shear modulus, phase angle, rutting resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
948 Rapid Discharge of Solid-State Hydrogen Storage Using Porous Silicon and Metal Foam

Authors: Loralee P. Potter, Peter J. Schubert

Abstract:

Solid-state hydrogen storage using catalytically-modified porous silicon can be rapidly charged at moderate pressures (8 bar) without exothermic runaway. Discharge requires temperatures of approximately 110oC, so for larger storage vessels a means is required for thermal energy to penetrate bulk storage media. This can be realized with low-density metal foams, such as Celmet™. This study explores several material and dimensional choices of the metal foam to produce rapid heating of bulk silicon particulates. Experiments run under vacuum and in a pressurized hydrogen environment bracket conditions of empty and full hydrogen storage vessels, respectively. Curve-fitting of the heating profiles at various distances from an external heat source is used to derive both a time delay and a characteristic time constant. System performance metrics of a hydrogen storage subsystem are derived from the experimental results. A techno-economic analysis of the silicon and metal foam provides comparison with other methods of storing hydrogen for mobile and portable applications. 

Keywords: conduction, convection, kinetics, fuel cell

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 648
947 3D Spatial Interaction with the Wii Remote for Head-Mounted Display Virtual Reality

Authors: Yang-Wai Chow

Abstract:

This research investigates the design of a low-cost 3D spatial interaction approach using the Wii Remote for immersive Head-Mounted Display (HMD) virtual reality. Current virtual reality applications that incorporate the Wii Remote are either desktop virtual reality applications or systems that use large screen displays. However, the requirements for an HMD virtual reality system differ from such systems. This is mainly because in HMD virtual reality, the display screen does not remain at a fixed location. The user views the virtual environment through display screens that are in front of the user-s eyes and when the user moves his/her head, these screens move as well. This means that the display has to be updated in realtime based on where the user is currently looking. Normal usage of the Wii Remote requires the controller to be pointed in a certain direction, typically towards the display. This is too restrictive for HMD virtual reality systems that ideally require the user to be able to turn around in the virtual environment. Previous work proposed a design to achieve this, however it suffered from a number of drawbacks. The aim of this study is to look into a suitable method of using the Wii Remote for 3D interaction in a space around the user for HMD virtual reality. This paper presents an overview of issues that had to be considered, the system design as well as experimental results.

Keywords: 3D interaction, head-mounted display, virtual reality, Wii remote

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
946 Pore Model Prediction of CH4 Separation from HS Using PTMSP and γ -Alumina Membranes

Authors: H. Mukhtar, N. M. Noor, R. Nasir, D. F. Mohshim

Abstract:

The main aim of this work is to develop a model of hydrogen sulfide (H2S) separation from natural gas by using membrane separation technology. The model is developed by incorporating three diffusion mechanisms which are Knudsen, viscous and surface diffusion towards membrane selectivity and permeability. The findings from the simulation result shows that the permeability of the gas is dependent toward the pore size of the membrane, operating pressure, operating temperature as well as feed composition. The permeability of methane has the highest value for Poly (1-trimethylsilyl-1-propyne ) PTMSP membrane at pore size of 0.1nm and decreasing toward a minimum peak at pore range 1 to 1.5 nm as pore size increased before it increase again for pore size is greater than 1.5 nm. On the other hand, the permeability of hydrogen sulfide is found to increase almost proportionally with the increase of membrane pore size. Generally, the increase of pressure will increase the permeability of gas since more driving force is provided to the system while increasing of temperature would decrease the permeability due to the surface diffusion drop off effect. A corroboration of the simulation result also showed a good agreement with the experimental data.

Keywords: Hydrogen Sulfide, Methane, Inorganic Membrane, Organic Membrane, Pore Model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3688
945 High Sensitivity Crack Detection and Locating with Optimized Spatial Wavelet Analysis

Authors: A. Ghanbari Mardasi, N. Wu, C. Wu

Abstract:

In this study, a spatial wavelet-based crack localization technique for a thick beam is presented. Wavelet scale in spatial wavelet transformation is optimized to enhance crack detection sensitivity. A windowing function is also employed to erase the edge effect of the wavelet transformation, which enables the method to detect and localize cracks near the beam/measurement boundaries. Theoretical model and vibration analysis considering the crack effect are first proposed and performed in MATLAB based on the Timoshenko beam model. Gabor wavelet family is applied to the beam vibration mode shapes derived from the theoretical beam model to magnify the crack effect so as to locate the crack. Relative wavelet coefficient is obtained for sensitivity analysis by comparing the coefficient values at different positions of the beam with the lowest value in the intact area of the beam. Afterward, the optimal wavelet scale corresponding to the highest relative wavelet coefficient at the crack position is obtained for each vibration mode, through numerical simulations. The same procedure is performed for cracks with different sizes and positions in order to find the optimal scale range for the Gabor wavelet family. Finally, Hanning window is applied to different vibration mode shapes in order to overcome the edge effect problem of wavelet transformation and its effect on the localization of crack close to the measurement boundaries. Comparison of the wavelet coefficients distribution of windowed and initial mode shapes demonstrates that window function eases the identification of the cracks close to the boundaries.

Keywords: Edge effect, scale optimization, small crack locating, spatial wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 939
944 Image Haze Removal Using Scene Depth Based Spatially Varying Atmospheric Light in Haar Lifting Wavelet Domain

Authors: Prabh Preet Singh, Harpreet Kaur

Abstract:

This paper presents a method for single image dehazing based on dark channel prior (DCP). The property that the intensity of the dark channel gives an approximate thickness of the haze is used to estimate the transmission and atmospheric light. Instead of constant atmospheric light, the proposed method employs scene depth to estimate spatially varying atmospheric light as it truly occurs in nature. Haze imaging model together with the soft matting method has been used in this work to produce high quality haze free image. Experimental results demonstrate that the proposed approach produces better results than the classic DCP approach as color fidelity and contrast of haze free image are improved and no over-saturation in the sky region is observed. Further, lifting Haar wavelet transform is employed to reduce overall execution time by a factor of two to three as compared to the conventional approach.

Keywords: Depth based atmospheric light, dark channel prior, lifting wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 525
943 Modeling of Pulsatile Blood Flow in a Weak Magnetic Field

Authors: Chee Teck Phua, Gaëlle Lissorgues

Abstract:

Blood pulse is an important human physiological signal commonly used for the understanding of the individual physical health. Current methods of non-invasive blood pulse sensing require direct contact or access to the human skin. As such, the performances of these devices tend to vary with time and are subjective to human body fluids (e.g. blood, perspiration and skin-oil) and environmental contaminants (e.g. mud, water, etc). This paper proposes a simulation model for the novel method of non-invasive acquisition of blood pulse using the disturbance created by blood flowing through a localized magnetic field. The simulation model geometry represents a blood vessel, a permanent magnet, a magnetic sensor, surrounding tissues and air in 2-dimensional. In this model, the velocity and pressure fields in the blood stream are described based on Navier-Stroke equations and the walls of the blood vessel are assumed to have no-slip condition. The blood assumes a parabolic profile considering a laminar flow for blood in major artery near the skin. And the inlet velocity follows a sinusoidal equation. This will allow the computational software to compute the interactions between the magnetic vector potential generated by the permanent magnet and the magnetic nanoparticles in the blood. These interactions are simulated based on Maxwell equations at the location where the magnetic sensor is placed. The simulated magnetic field at the sensor location is found to assume similar sinusoidal waveform characteristics as the inlet velocity of the blood. The amplitude of the simulated waveforms at the sensor location are compared with physical measurements on human subjects and found to be highly correlated.

Keywords: Blood pulse, magnetic sensing, non-invasive measurement, magnetic disturbance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2599
942 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment

Authors: Bireswar Paul, Amitava Datta

Abstract:

Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material. 

Keywords: Indoor air, carbon nanoparticles, LPG, partially premixed flame, optical techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
941 Analytical Subthreshold Drain Current Model Incorporating Inversion Layer Effective Mobility Model for Pocket Implanted Nano Scale n-MOSFET

Authors: Muhibul Haque Bhuyan, Quazi D. M. Khosru

Abstract:

Carrier scatterings in the inversion channel of MOSFET dominates the carrier mobility and hence drain current. This paper presents an analytical model of the subthreshold drain current incorporating the effective electron mobility model of the pocket implanted nano scale n-MOSFET. The model is developed by assuming two linear pocket profiles at the source and drain edges at the surface and by using the conventional drift-diffusion equation. Effective electron mobility model includes three scattering mechanisms, such as, Coulomb, phonon and surface roughness scatterings as well as ballistic phenomena in the pocket implanted n-MOSFET. The model is simulated for various pocket profile and device parameters as well as for various bias conditions. Simulation results show that the subthreshold drain current data matches the experimental data already published in the literature.

Keywords: Linear Pocket Profile, Pocket Implanted n-MOSFET, Subthreshold Drain Current and Effective Mobility Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2547
940 An Experimental Consideration of the Hybrid Architecture Based on the Situated Action Generator

Authors: Serin Lee, Takashi Kubota, Ichiro Nakatani

Abstract:

The approaches to make an agent generate intelligent actions in the AI field might be roughly categorized into two ways–the classical planning and situated action system. It is well known that each system have its own strength and weakness. However, each system also has its own application field. In particular, most of situated action systems do not directly deal with the logical problem. This paper first briefly mentions the novel action generator to situatedly extract a set of actions, which is likely to help to achieve the goal at the current situation in the relaxed logical space. After performing the action set, the agent should recognize the situation for deciding the next likely action set. However, since the extracted action is an approximation of the action which helps to achieve the goal, the agent could be caught into the deadlock of the problem. This paper proposes the newly developed hybrid architecture to solve the problem, which combines the novel situated action generator with the conventional planner. The empirical result in some planning domains shows that the quality of the resultant path to the goal is mostly acceptable as well as deriving the fast response time, and suggests the correlation between the structure of problems and the organization of each system which generates the action.

Keywords: Situated reasoning, situated action, planning, hybrid architecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1108
939 Autohydrolysis Treatment of Olive Cake to Extract Fructose and Sucrose

Authors: G. Blázquez, A. Gálvez-Pérez, M. Calero, I. Iáñez-Rodríguez, M. A. Martín-Lara, A. Pérez

Abstract:

The production of olive oil is considered as one of the most important agri-food industries. However, some of the by-products generated in the process are potential pollutants and cause environmental problems. Consequently, the management of these by-products is currently considered as a challenge for the olive oil industry. In this context, several technologies have been developed and tested. In this sense, the autohydrolysis of these by-products could be considered as a promising technique. Therefore, this study focused on autohydrolysis treatments of a solid residue from the olive oil industry denominated olive cake. This one comes from the olive pomace extraction with hexane. Firstly, a water washing was carried out to eliminate the water soluble compounds. Then, an experimental design was developed for the autohydrolysis experiments carried out in the hydrothermal pressure reactor. The studied variables were temperature (30, 60 and 90 ºC) and time (30, 60, 90 min). On the other hand, aliquots of liquid obtained fractions were analysed by HPLC to determine the fructose and sucrose contents present in the liquid fraction. Finally, the obtained results of sugars contents and the yields of the different experiments were fitted to a neuro-fuzzy and to a polynomial model.

Keywords: ANFIS, olive cake, polyols, saccharides.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 633
938 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2357
937 Multiple Targets Classification and Fuzzy Logic Decision Fusion in Wireless Sensor Networks

Authors: Ahmad Aljaafreh

Abstract:

This paper proposes a hierarchical hidden Markov model (HHMM) to model the detection of M vehicles in a wireless sensor network (WSN). The HHMM model contains an extra level of hidden Markov model to model the temporal transitions of each state of the first HMM. By modeling the temporal transitions, only those hypothesis with nonzero transition probabilities needs to be tested. Thus, this method efficiently reduces the computation load, which is preferable in WSN applications.This paper integrates several techniques to optimize the detection performance. The output of the states of the first HMM is modeled as Gaussian Mixture Model (GMM), where the number of states and the number of Gaussians are experimentally determined, while the other parameters are estimated using Expectation Maximization (EM). HHMM is used to model the sequence of the local decisions which are based on multiple hypothesis testing with maximum likelihood approach. The states in the HHMM represent various combinations of vehicles of different types. Due to the statistical advantages of multisensor data fusion, we propose a heuristic based on fuzzy weighted majority voting to enhance cooperative classification of moving vehicles within a region that is monitored by a wireless sensor network. A fuzzy inference system weighs each local decision based on the signal to noise ratio of the acoustic signal for target detection and the signal to noise ratio of the radio signal for sensor communication. The spatial correlation among the observations of neighboring sensor nodes is efficiently utilized as well as the temporal correlation. Simulation results demonstrate the efficiency of this scheme.

Keywords: Classification, decision fusion, fuzzy logic, hidden Markov model

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6232
936 Comparison of Double Unit Tunnel Form Building before and after Repair and Retrofit under in-Plane Cyclic Loading

Authors: S. A. Anuar, N. H. Hamid, M. H. Hashim, S. M. D. Salleh

Abstract:

This paper present the experimental work of double unit tunnel form building (TFB) subjected to in-plane lateral cyclic loading. A one third scale of 3-storey double unit of TFB is tested until its strength degradation. Then, the TFB is repaired and retrofitted using additional shear wall, steel angle and CFRP sheet. The crack patterns, lateral strength, stiffness, ductility and equivalent viscous damping (EVD) were analyzed and compared before and after repair and retrofit. The result indicates that the lateral strength increases by 22% in pushing and 27% in pulling direction. Moreover, the stiffness and ductility obtained before and after retrofit increase tremendously by 87.87% and 39.66%, respectively. Meanwhile, the energy absorption measured by equivalent viscous damping obtained after retrofit increase by 12.34% in pulling direction. It can be concluded that the proposed retrofit method is capable to increase the lateral strength capacity, stiffness and energy absorption of double unit TFB.

Keywords: Crack pattern, stiffness, ductility, equivalent viscous damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
935 Statistical Optimization of Enzymatic Hydrolysis of Potato (Solanum tuberosum) Starch by Immobilized α-amylase

Authors: N.Peatciyammal, B.Balachandar, M.Dinesh Kumar, K.Tamilarasan, C.Muthukumaran

Abstract:

Enzymatic hydrolysis of starch from natural sources finds potential application in commercial production of alcoholic beverage and bioethanol. In this study the effect of starch concentration, temperature, time and enzyme concentration were studied and optimized for hydrolysis of Potato starch powder (of mesh 80/120) into glucose syrup by immobilized (using Sodium arginate) α-amylase using central composite design. The experimental result on enzymatic hydrolysis of Potato starch was subjected to multiple linear regression analysis using MINITAB 14 software. Positive linear effect of starch concentration, enzyme concentration and time was observed on hydrolysis of Potato starch by α-amylase. The statistical significance of the model was validated by F-test for analysis of variance (p ≤ 0.01). The optimum value of starch concentration, enzyme concentration, temperature, time and were found to be 6% (w/v), 2% (w/v), 40°C and 80min respectively. The maximum glucose yield at optimum condition was 2.34 mg/mL.

Keywords: Alcoholic beverage, Central Composite Design, Enzymatic hydrolysis, Glucose yield, Potato Starch.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6025
934 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process

Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast

Abstract:

Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.

Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1560
933 Machine Learning Techniques in Bank Credit Analysis

Authors: Fernanda M. Assef, Maria Teresinha A. Steiner

Abstract:

The aim of this paper is to compare and discuss better classifier algorithm options for credit risk assessment by applying different Machine Learning techniques. Using records from a Brazilian financial institution, this study uses a database of 5,432 companies that are clients of the bank, where 2,600 clients are classified as non-defaulters, 1,551 are classified as defaulters and 1,281 are temporarily defaulters, meaning that the clients are overdue on their payments for up 180 days. For each case, a total of 15 attributes was considered for a one-against-all assessment using four different techniques: Artificial Neural Networks Multilayer Perceptron (ANN-MLP), Artificial Neural Networks Radial Basis Functions (ANN-RBF), Logistic Regression (LR) and finally Support Vector Machines (SVM). For each method, different parameters were analyzed in order to obtain different results when the best of each technique was compared. Initially the data were coded in thermometer code (numerical attributes) or dummy coding (for nominal attributes). The methods were then evaluated for each parameter and the best result of each technique was compared in terms of accuracy, false positives, false negatives, true positives and true negatives. This comparison showed that the best method, in terms of accuracy, was ANN-RBF (79.20% for non-defaulter classification, 97.74% for defaulters and 75.37% for the temporarily defaulter classification). However, the best accuracy does not always represent the best technique. For instance, on the classification of temporarily defaulters, this technique, in terms of false positives, was surpassed by SVM, which had the lowest rate (0.07%) of false positive classifications. All these intrinsic details are discussed considering the results found, and an overview of what was presented is shown in the conclusion of this study.

Keywords: Artificial Neural Networks, ANNs, classifier algorithms, credit risk assessment, logistic regression, machine learning, support vector machines.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1246
932 Reducing the Imbalance Penalty through Artificial Intelligence Methods Geothermal Production Forecasting: A Case Study for Turkey

Authors: H. Anıl, G. Kar

Abstract:

In addition to being rich in renewable energy resources, Turkey is one of the countries that promise potential in geothermal energy production with its high installed power, cheapness, and sustainability. Increasing imbalance penalties become an economic burden for organizations, since the geothermal generation plants cannot maintain the balance of supply and demand due to the inadequacy of the production forecasts given in the day-ahead market. A better production forecast reduces the imbalance penalties of market participants and provides a better imbalance in the day ahead market. In this study, using machine learning, deep learning and time series methods, the total generation of the power plants belonging to Zorlu Doğal Electricity Generation, which has a high installed capacity in terms of geothermal, was predicted for the first one-week and first two-weeks of March, then the imbalance penalties were calculated with these estimates and compared with the real values. These modeling operations were carried out on two datasets, the basic dataset and the dataset created by extracting new features from this dataset with the feature engineering method. According to the results, Support Vector Regression from traditional machine learning models outperformed other models and exhibited the best performance. In addition, the estimation results in the feature engineering dataset showed lower error rates than the basic dataset. It has been concluded that the estimated imbalance penalty calculated for the selected organization is lower than the actual imbalance penalty, optimum and profitable accounts.

Keywords: Machine learning, deep learning, time series models, feature engineering, geothermal energy production forecasting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
931 Experimental Investigation on Effect of the Zirconium + Magnesium Coating of the Piston and Valve of the Single-Cylinder Diesel Engine to the Engine Performance and Emission

Authors: Erdinç Vural, Bülent Özdalyan, Serkan Özel

Abstract:

The four-stroke single cylinder diesel engine has been used in this study, the pistons and valves of the engine have been stabilized, the aluminum oxide (Al2O3) in different ratios has been added in the power of zirconium (ZrO2) magnesium oxide (MgO), and has been coated with the plasma spray method. The pistons and valves of the combustion chamber of the engine are coated with 5 different (ZrO2 + MgO), (ZrO2 + MgO + 25% Al2O3), (ZrO2 + MgO + 50% Al2O3), (ZrO2 + MgO + 75% Al2O3), (Al2O3) sample. The material tests have been made for each of the coated engine parts with the scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) using Cu Kα radiation surface analysis methods. The engine tests have been repeated for each sample in any electric dynamometer in full power 1600 rpm, 2000 rpm, 2400 rpm and 2800 rpm engine speeds. The material analysis and engine tests have shown that the best performance has been performed with (ZrO2 + MgO + 50% Al2O3). Thus, there is no significant change in HC and Smoke emissions, but NOx emission is increased, as the engine improves power, torque, specific fuel consumption and CO emissions in the tests made with sample A3.

Keywords: Ceramic coating, material characterization, engine performance, exhaust emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
930 Data Hiding by Vector Quantization in Color Image

Authors: Yung-Gi Wu

Abstract:

With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.

Keywords: Data hiding, vector quantization, watermark.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1764
929 Reduced Rule Based Fuzzy Logic Controlled Isolated Bidirectional Converter Operating in Extended Phase Shift Control for Bidirectional Energy Transfer

Authors: Anupam Kumar, Abdul Hamid Bhat, Pramod Agarwal

Abstract:

Bidirectional energy transfer capability with high efficiency and reduced cost is fast gaining prominence in the central part of a lot of power conversion systems in Direct Current (DC) microgrid. Preferably, under the economics constraints, these systems utilise a single high efficiency power electronics conversion system and a dual active bridge converter. In this paper, modeling and performance of Dual Active Bridge (DAB) converter with Extended Phase Shift (EPS) is evaluated with two batteries on both sides of DC bus and bidirectional energy transfer is facilitated and this is further compared with the Single Phase Shift (SPS) mode of operation. Optimum operating zone is identified through exhaustive simulations using MATLAB/Simulink and SimPowerSystem software. Reduced rules based fuzzy logic controller is implemented for closed loop control of DAB converter. The control logic enables the bidirectional energy transfer within the batteries even at lower duty ratios. Charging and discharging of batteries is supervised by the fuzzy logic controller. State of charge, current and voltage for both the batteries are plotted in the battery characteristics. Power characteristics of batteries are also obtained using MATLAB simulations.

Keywords: Fuzzy logic controller, rule base, membership functions, dual active bridge converter, bidirectional power flow, duty ratio, extended phase shift, state of charge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 844
928 Finite Element Analysis of Cooling Time and Residual Strains in Cold Spray Deposited Titanium Particles

Authors: Thanh-Duoc Phan, Saden H. Zahiri, S. H. Masood, Mahnaz Jahedi

Abstract:

In this article, using finite element analysis (FEA) and an X-ray diffractometer (XRD), cold-sprayed titanium particles on a steel substrate is investigated in term of cooling time and the development of residual strains. Three cooling-down models of sprayed particles after deposition stage are simulated and discussed: the first model (m1) considers conduction effect to the substrate only, the second model (m2) considers both conduction as well as convection effect to the environment, and the third model (m3) which is the same as the second model but with the substrate heated to a near particle temperature before spraying. Thereafter, residual strains developed in the third model is compared with the experimental measurement of residual strains, which involved a Bruker D8 Advance Diffractometer using CuKa radiation (40kV, 40mA) monochromatised with a graphite sample monochromator. For deposition conditions of this study, a good correlation was found to exist between the FEA results and XRD measurements of residual strains.

Keywords: cold gas dynamic spray, X-ray diffraction, explicit finite element analysis, residual strain, titanium, particle impact, deformation behavior.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744