Search results for: Boundary layer equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2496

Search results for: Boundary layer equation

1986 Performance Evaluation of AOMDV-PAMAC Protocols for Ad Hoc Networks

Authors: B. Malarkodi, S. K. Riyaz Hussain, B. Venkataramani

Abstract:

Power consumption of nodes in ad hoc networks is a critical issue as they predominantly operate on batteries. In order to improve the lifetime of an ad hoc network, all the nodes must be utilized evenly and the power required for connections must be minimized. In this project a link layer algorithm known as Power Aware medium Access Control (PAMAC) protocol is proposed which enables the network layer to select a route with minimum total power requirement among the possible routes between a source and a destination provided all nodes in the routes have battery capacity above a threshold. When the battery capacity goes below a predefined threshold, routes going through these nodes will be avoided and these nodes will act only as source and destination. Further, the first few nodes whose battery power drained to the set threshold value are pushed to the exterior part of the network and the nodes in the exterior are brought to the interior. Since less total power is required to forward packets for each connection. The network layer protocol AOMDV is basically an extension to the AODV routing protocol. AOMDV is designed to form multiple routes to the destination and it also avoid the loop formation so that it reduces the unnecessary congestion to the channel. In this project, the performance of AOMDV is evaluated using PAMAC as a MAC layer protocol and the average power consumption, throughput and average end to end delay of the network are calculated and the results are compared with that of the other network layer protocol AODV.

Keywords: AODV, PAMAC, AOMDV, Power consumption.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1799
1985 Architectural Stratification and Woody Species Diversity of a Subtropical Forest Grown in a Limestone Habitat in Okinawa Island, Japan

Authors: S. M. Feroz, K. Yoshimura, A. Hagihara

Abstract:

The forest stand consisted of four layers. The species composition between the third and the bottom layers was almost similar, whereas it was almost exclusive between the top and the lower three layers. The values of Shannon-s index H' and Pielou-s index J ' tended to increase from the bottom layer upward, except for H' -value of the top layer. The values of H' and J ' were 4.21 bit and 0.73, respectively, for the total stand. High woody species diversity of the forest depended on large trees in the upper layers, which trend was different from a subtropical evergreen broadleaf forest grown in silicate habitat in the northern part of Okinawa Island. The spatial distribution of trees was overlapped between the third and the bottom layers, whereas it was independent or slightly exclusive between the top and the lower three layers. Mean tree weight of each layer decreased from the top toward the bottom layer, whereas the corresponding tree density increased from the top downward. This relationship was analogous to the process of self-thinning plant populations.

Keywords: Canopy multi-layering, limestone habitat, mean tree weight-density relationship, species diversity, subtropical forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
1984 Ion- Acoustic Solitary Waves in a Self- Gravitating Dusty Plasma Having Two-Temperature Electrons

Authors: S.N.Paul, G.Pakira, B.Paul, B.Ghosh

Abstract:

Nonlinear propagation of ion-acoustic waves in a selfgravitating dusty plasma consisting of warm positive ions, isothermal two-temperature electrons and negatively charged dust particles having charge fluctuations is studied using the reductive perturbation method. It is shown that the nonlinear propagation of ion-acoustic waves in such plasma can be described by an uncoupled third order partial differential equation which is a modified form of the usual Korteweg-deVries (KdV) equation. From this nonlinear equation, a new type of solution for the ion-acoustic wave is obtained. The effects of two-temperature electrons, gravity and dust charge fluctuations on the ion-acoustic solitary waves are discussed with possible applications.

Keywords: Charge fluctuations, gravitating dusty plasma, Ionacoustic solitary wave, Two-temperature electrons

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
1983 Traffic Flow on Road Junctions

Authors: Wah Wah Aung, Cho Cho San

Abstract:

The paper deals with a mathematical model for fluid dynamic flows on road networks which is based on conservation laws. This nonlinear framework is based on the conservation of cars. We focus on traffic circle, which is a finite number of roads that meet at some junctions. The traffic circle with junctions having either one incoming and two outgoing or two incoming and one outgoing roads. We describe the numerical schemes with the particular boundary conditions used to produce approximated solutions of the problem.

Keywords: boundary conditions, conservation laws, finite difference Schemes, traffic flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2212
1982 Vibration of Functionally Graded Cylindrical Shells Under Effect Clamped-Free Boundary Conditions Using Hamilton's Principle

Authors: M.R. Isvandzibaei, M.R. Alinaghizadeh, A.H. Zaman

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of clamped-free boundary conditions

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle, clamped supported.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1981 Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks

Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat

Abstract:

Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.

Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2957
1980 Vibration of Functionally Graded Cylindrical Shells under Effects Free-free and Clamed-clamped Boundary Conditions

Authors: M. R.Isvandzibaei, A.Jahani

Abstract:

In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The analysis is carried out using Hamilton's principle. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free and clamped-clamped boundary conditions.

Keywords: Vibration, FGM, cylindrical shell, Hamilton's principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1607
1979 A Shape Optimization Method in Viscous Flow Using Acoustic Velocity and Four-step Explicit Scheme

Authors: Yoichi Hikino, Mutsuto Kawahara

Abstract:

The purpose of this study is to derive optimal shapes of a body located in viscous flows by the finite element method using the acoustic velocity and the four-step explicit scheme. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint conditions by using the adjoint equation with adjoint variables corresponding to the state equation. The performance function is defined by the drag and lift forces acting on the body. The weighted gradient method is applied as a minimization technique, the Galerkin finite element method is used as a spatial discretization and the four-step explicit scheme is used as a temporal discretization to solve the state equation and the adjoint equation. As the interpolation, the orthogonal basis bubble function for velocity and the linear function for pressure are employed. In case that the orthogonal basis bubble function is used, the mass matrix can be diagonalized without any artificial centralization. The shape optimization is performed by the presented method.

Keywords: Shape Optimization, Optimal Control Theory, Finite Element Method, Weighted Gradient Method, Fluid Force, Orthogonal Basis Bubble Function, Four-step Explicit Scheme, Acoustic Velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1440
1978 Existence of Periodic Solution for p-Laplacian Neutral Rayleigh Equation with Sign-variable Coefficient of Non Linear Term

Authors: Aomar Anane, Omar Chakrone, Loubna Moutaouekkil

Abstract:

As p-Laplacian equations have been widely applied in field of the fluid mechanics and nonlinear elastic mechanics, it is necessary to investigate the periodic solutions of functional differential equations involving the scalar p-Laplacian. By using Mawhin’s continuation theorem, we study the existence of periodic solutions for p-Laplacian neutral Rayleigh equation (ϕp(x(t)−c(t)x(t − r))) + f(x(t)) + g1(x(t − τ1(t, |x|∞))) + β(t)g2(x(t − τ2(t, |x|∞))) = e(t), It is meaningful that the functions c(t) and β(t) are allowed to change signs in this paper, which are different from the corresponding ones of known literature.

Keywords: periodic solution, neutral Rayleigh equation, variable sign, Deviating argument, p-Laplacian, Mawhin’s continuation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351
1977 Simulation of Sloshing-Shear Mixed Shallow Water Waves (II) Numerical Solutions

Authors: Weihao Chung, Iau-Teh Wang, Yu-Hsi Hu

Abstract:

This is the second part of the paper. It, aside from the core subroutine test reported previously, focuses on the simulation of turbulence governed by the full STF Navier-Stokes equations on a large scale. Law of the wall is found plausible in this study as a model of the boundary layer dynamics. Model validations proceed to include velocity profiles of a stationary turbulent Couette flow, pure sloshing flow simulations, and the identification of water-surface inclination due to fluid accelerations. Errors resulting from the irrotational and hydrostatic assumptions are explored when studying a wind-driven water circulation with no shakings. Illustrative examples show that this numerical strategy works for the simulation of sloshing-shear mixed flow in a 3-D rigid rectangular base tank.

Keywords: potential flow theory, sloshing flow, space-timefiltering, order of accuracy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
1976 Silicon-To-Silicon Anodic Bonding via Intermediate Borosilicate Layer for Passive Flow Control Valves

Authors: Luc Conti, Dimitry Dumont-Fillon, Harald van Lintel, Eric Chappel

Abstract:

Flow control valves comprise a silicon flexible membrane that deflects against a substrate, usually made of glass, containing pillars, an outlet hole, and anti-stiction features. However, there is a strong interest in using silicon instead of glass as substrate material, as it would simplify the process flow by allowing the use of well controlled anisotropic etching. Moreover, specific devices demanding a bending of the substrate would also benefit from the inherent outstanding mechanical strength of monocrystalline silicon. Unfortunately, direct Si-Si bonding is not easily achieved with highly structured wafers since residual stress may prevent the good adhesion between wafers. Using a thermoplastic polymer, such as parylene, as intermediate layer is not well adapted to this design as the wafer-to-wafer alignment is critical. An alternative anodic bonding method using an intermediate borosilicate layer has been successfully tested. This layer has been deposited onto the silicon substrate. The bonding recipe has been adapted to account for the presence of the SOI buried oxide and intermediate glass layer in order not to exceed the breakdown voltage. Flow control valves dedicated to infusion of viscous fluids at very high pressure have been made and characterized. The results are compared to previous data obtained using the standard anodic bonding method.

Keywords: Anodic bonding, evaporated glass, microfluidic valve, drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 819
1975 Localized Meshfree Methods for Solving 3D-Helmholtz Equation

Authors: Reza Mollapourasl, Majid Haghi

Abstract:

In this study, we develop local meshfree methods known as radial basis function-generated finite difference (RBF-FD) method and Hermite finite difference (RBF-HFD) method to design stencil weights and spatial discretization for Helmholtz equation. The convergence and stability of schemes are investigated numerically in three dimensions with irregular shaped domain. These localized meshless methods incorporate the advantages of the RBF method, finite difference and Hermite finite difference methods to handle the ill-conditioning issue that often destroys the convergence rate of global RBF methods. Moreover, numerical illustrations show that the proposed localized RBF type methods are efficient and applicable for problems with complex geometries. The convergence and accuracy of both schemes are compared by solving a test problem.

Keywords: Radial basis functions, Hermite finite difference, Helmholtz equation, stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 79
1974 A Survey: Bandwidth Management in an IP Based Network

Authors: M. Kassim, M. Ismail, K. Jumari, M.I Yusof

Abstract:

this paper presented a survey analysis subjected on network bandwidth management from published papers referred in IEEE Explorer database in three years from 2009 to 2011. Network Bandwidth Management is discussed in today-s issues for computer engineering applications and systems. Detailed comparison is presented between published papers to look further in the IP based network critical research area for network bandwidth management. Important information such as the network focus area, a few modeling in the IP Based Network and filtering or scheduling used in the network applications layer is presented. Many researches on bandwidth management have been done in the broad network area but fewer are done in IP Based network specifically at the applications network layer. A few researches has contributed new scheme or enhanced modeling but still the issue of bandwidth management still arise at the applications network layer. This survey is taken as a basic research towards implementations of network bandwidth management technique, new framework model and scheduling scheme or algorithm in an IP Based network which will focus in a control bandwidth mechanism in prioritizing the network traffic the applications layer.

Keywords: Bandwidth Management (BM), IP Based network, modeling, algorithm, internet traffic, network Management, Quality of Service (QoS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3304
1973 Contribution to Active and Passive Control of Flow around a Cylinder

Authors: M. Tahar Bouzaher

Abstract:

This numerical study aims to develop a coupled, passive and active control strategy of the flow around a cylinder of diameter D, and Re=4000. The strategy consists to put a cylindrical rod in front of a deforming cylinder. The quasi- elliptical deformation of cylinder follow a sinusoidal law in order to reduce the drag force. To analyze the evolution of unsteady vortices, the Large Eddy Simulation approach is used in this 2D simulation, carried out using ANSYS – Fluent. The movement of deformation is reproduced using an internal subroutine, introduced in the form of a User Defined Function UDF. Two diameters of the rod were tested for a rod placed at a distance L = 3 ×d, with an amplitudes of deformation A = 5%, A = 25% and A = 50% of the cylinder diameter, the frequency of deformation take the values fd = 1fn, 5fn and 8fn, which fn represents the naturel vortex shedding frequency. The results show substantial changes in the flow behavior and for a rod of 6mm (1% D) with amplitude A = 25%, and with a 2fn frequency, drag reduction of 60% was recorded.

Keywords: CFD, Flow separation, control, Boundary layer, rod, Cylinder.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2216
1972 A Review on Higher Order Spline Techniques for Solving Burgers Equation Using B-Spline Methods and Variation of B-Spline Techniques

Authors: Maryam Khazaei Pool, Lori Lewis

Abstract:

This is a summary of articles based on higher order B-splines methods and the variation of B-spline methods such as Quadratic B-spline Finite Elements Method, Exponential Cubic B-Spline Method Septic B-spline Technique, Quintic B-spline Galerkin Method, and B-spline Galerkin Method based on the Quadratic B-spline Galerkin method (QBGM) and Cubic B-spline Galerkin method (CBGM). In this paper we study the B-spline methods and variations of B-spline techniques to find a numerical solution to the Burgers’ equation. A set of fundamental definitions including Burgers equation, spline functions, and B-spline functions are provided. For each method, the main technique is discussed as well as the discretization and stability analysis. A summary of the numerical results is provided and the efficiency of each method presented is discussed. A general conclusion is provided where we look at a comparison between the computational results of all the presented schemes. We describe the effectiveness and advantages of these methods.

Keywords: Burgers’ Equation, Septic B-spline, Modified Cubic B-Spline Differential Quadrature Method, Exponential Cubic B-Spline Technique, B-Spline Galerkin Method, and Quintic B-Spline Galerkin Method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317
1971 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: Airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1053
1970 Predictability of the Two Commonly Used Models to Represent the Thin-layer Re-wetting Characteristics of Barley

Authors: M. A. Basunia

Abstract:

Thirty three re-wetting tests were conducted at different combinations of temperatures (5.7- 46.30C) and relative humidites (48.2-88.6%) with barley. Two most commonly used thinlayer drying and rewetting models i.e. Page and Diffusion were compared for their ability to the fit the experimental re-wetting data based on the standard error of estimate (SEE) of the measured and simulated moisture contents. The comparison shows both the Page and Diffusion models fit the re-wetting experimental data of barley well. The average SEE values for the Page and Diffusion models were 0.176 % d.b. and 0.199 % d.b., respectively. The Page and Diffusion models were found to be most suitable equations, to describe the thin-layer re-wetting characteristics of barley over a typically five day re-wetting. These two models can be used for the simulation of deep-bed re-wetting of barley occurring during ventilated storage and deep bed drying.

Keywords: Thin-layer, barley, re-wetting parameters, temperature, relative humidity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1475
1969 Integral Operators Related to Problems of Interface Dynamics

Authors: Pa Pa Lin

Abstract:

This research work is concerned with the eigenvalue problem for the integral operators which are obtained by linearization of a nonlocal evolution equation. The purpose of section II.A is to describe the nature of the problem and the objective of the project. The problem is related to the “stable solution" of the evolution equation which is the so-called “instanton" that describe the interface between two stable phases. The analysis of the instanton and its asymptotic behavior are described in section II.C by imposing the Green function and making use of a probability kernel. As a result , a classical Theorem which is important for an instanton is proved. Section III devoted to a study of the integral operators related to interface dynamics which concern the analysis of the Cauchy problem for the evolution equation with initial data close to different phases and different regions of space.

Keywords: Evolution, Green function, instanton, integral operators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1213
1968 Industrial Applications of Laser Engraving: Influence of the Process Parameters on Machined Surface Quality

Authors: F.Agalianos, S.Patelis , P. Kyratsis, E. Maravelakis, E.Vasarmidis, A.Antoniadis

Abstract:

Laser engraving is a manufacturing method for those applications where previously Electrical Discharge Machining (EDM) was the only choice. Laser engraving technology removes material layer-by-layer and the thickness of layers is usually in the range of few microns. The aim of the present work is to investigate the influence of the process parameters on the surface quality when machined by laser engraving. The examined parameters were: the pulse frequency, the beam speed and the layer thickness. The surface quality was determined by the surface roughness for every set of parameters. Experimental results on Al7075 material showed that the surface roughness strictly depends on the process parameters used.

Keywords: Laser engraving, Al7075, Yb: YAG laser, laser process parameters, material roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536
1967 A Novel Prostate Segmentation Algorithm in TRUS Images

Authors: Ali Rafiee, Ahad Salimi, Ali Reza Roosta

Abstract:

Prostate cancer is one of the most frequent cancers in men and is a major cause of mortality in the most of countries. In many diagnostic and treatment procedures for prostate disease accurate detection of prostate boundaries in transrectal ultrasound (TRUS) images is required. This is a challenging and difficult task due to weak prostate boundaries, speckle noise and the short range of gray levels. In this paper a novel method for automatic prostate segmentation in TRUS images is presented. This method involves preprocessing (edge preserving noise reduction and smoothing) and prostate segmentation. The speckle reduction has been achieved by using stick filter and top-hat transform has been implemented for smoothing. A feed forward neural network and local binary pattern together have been use to find a point inside prostate object. Finally the boundary of prostate is extracted by the inside point and an active contour algorithm. A numbers of experiments are conducted to validate this method and results showed that this new algorithm extracted the prostate boundary with MSE less than 4.6% relative to boundary provided manually by physicians.

Keywords: Prostate segmentation, stick filter, neural network, active contour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1942
1966 Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions

Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa

Abstract:

In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.

Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 418
1965 Heat and Mass Transfer over an Unsteady Stretching Surface Embedded in a Porous Medium in the Presence of Variable Chemical Reaction

Authors: T. G. Emam

Abstract:

The effect of variable chemical reaction on heat and mass transfer characteristics over unsteady stretching surface embedded in a porus medium is studied. The governing time dependent boundary layer equations are transformed into ordinary differential equations containing chemical reaction parameter, unsteadiness parameter, Prandtl number and Schmidt number. These equations have been transformed into a system of first order differential equations. MATHEMATICA has been used to solve this system after obtaining the missed initial conditions. The velocity gradient, temperature, and concentration profiles are computed and discussed in details for various values of the different parameters.

Keywords: Heat and mass transfer, stretching surface, chemical reaction, porus medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1856
1964 On Simulation based WSN Multi-Parametric Performance Analysis

Authors: Ch. Antonopoulos, Th. Kapourniotis, V. Triantafillou

Abstract:

Optimum communication and performance in Wireless Sensor Networks, constitute multi-facet challenges due to the specific networking characteristics as well as the scarce resource availability. Furthermore, it is becoming increasingly apparent that isolated layer based approaches often do not meet the demands posed by WSNs applications due to omission of critical inter-layer interactions and dependencies. As a counterpart, cross-layer is receiving high interest aiming to exploit these interactions and increase network performance. However, in order to clearly identify existing dependencies, comprehensive performance studies are required evaluating the effect of different critical network parameters on system level performance and behavior.This paper-s main objective is to address the need for multi-parametric performance evaluations considering critical network parameters using a well known network simulator, offering useful and practical conclusions and guidelines. The results reveal strong dependencies among considered parameters which can be utilized by and drive future research efforts, towards designing and implementing highly efficient protocols and architectures.

Keywords: Wireless sensor network, Communication Systems, cross-layer architectures, simulation based performance evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1505
1963 On the Fuzzy Difference Equation xn+1 = A +

Authors: Qianhong Zhang, Lihui Yang, Daixi Liao,

Abstract:

In this paper, we study the existence, the boundedness and the asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equations xn+1 = A + k i=0 Bi xn-i , n= 0, 1, · · · . where (xn) is a sequence of positive fuzzy numbers, A,Bi and the initial values x-k, x-k+1, · · · , x0 are positive fuzzy numbers. k ∈ {0, 1, 2, · · ·}.

Keywords: Fuzzy difference equation, boundedness, persistence, equilibrium point, asymptotic behaviour.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
1962 Design of Adaptive Sliding Mode Controller for Robotic Manipulators Tracking Control

Authors: T. C. Kuo, Y. J. Huang, B. W. Hong

Abstract:

This paper proposes an adaptive sliding mode controller which combines adaptive control and sliding mode control to control a nonlinear robotic manipulator with uncertain parameters. We use an adaptive algorithm based on the concept of sliding mode control to alleviate the chattering phenomenon of control input. Adaptive laws are developed to obtain the gain of switching input and the boundary layer parameters. The stability and convergence of the robotic manipulator control system are guaranteed by applying the Lyapunov theorem. Simulation results demonstrate that the chattering of control input can be alleviated effectively. The proposed controller scheme can assure robustness against a large class of uncertainties and achieve good trajectory tracking performance.

Keywords: Robotic manipulators, sliding mode control, adaptive law, Lyapunov theorem, robustness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3020
1961 Conjugate Gradient Algorithm for the Symmetric Arrowhead Solution of Matrix Equation AXB=C

Authors: Minghui Wang, Luping Xu, Juntao Zhang

Abstract:

Based on the conjugate gradient (CG) algorithm, the constrained matrix equation AXB=C and the associate optimal approximation problem are considered for the symmetric arrowhead matrix solutions in the premise of consistency. The convergence results of the method are presented. At last, a numerical example is given to illustrate the efficiency of this method.

Keywords: Iterative method, symmetric arrowhead matrix, conjugate gradient algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1387
1960 Increase of Energy Efficiency by Means of Application of Active Bearings

Authors: Alexander Babin, Leonid Savin

Abstract:

In the present paper, increasing of energy efficiency of a thrust hybrid bearing with a central feeding chamber is considered. The mathematical model was developed to determine the pressure distribution and the reaction forces, based on the Reynolds equation and static characteristics’ equations. The boundary problem of pressure distribution calculation was solved using the method of finite differences. For various types of lubricants, geometry and operational characteristics, axial gaps can be determined, where the minimal friction coefficient is provided. The next part of the study considers the application of servovalves in order to maintain the desired position of the rotor. The report features the calculation results and the analysis of the influence of the operational and geometric parameters on the energy efficiency of mechatronic fluid-film bearings.

Keywords: Active bearings, energy efficiency, mathematical model, mechatronics, thrust multipad bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1200
1959 Numerical Analysis of Thermal Conductivity of Non-Charring Material Ablation Carbon-Carbon and Graphite with Considering Chemical Reaction Effects, Mass Transfer and Surface Heat Transfer

Authors: H. Mohammadiun, A. Kianifar, A. Kargar

Abstract:

Nowadays, there is little information, concerning the heat shield systems, and this information is not completely reliable to use in so many cases. for example, the precise calculation cannot be done for various materials. In addition, the real scale test has two disadvantages: high cost and low flexibility, and for each case we must perform a new test. Hence, using numerical modeling program that calculates the surface recession rate and interior temperature distribution is necessary. Also, numerical solution of governing equation for non-charring material ablation is presented in order to anticipate the recession rate and the heat response of non-charring heat shields. the governing equation is nonlinear and the Newton- Rafson method along with TDMA algorithm is used to solve this nonlinear equation system. Using Newton- Rafson method for solving the governing equation is one of the advantages of the solving method because this method is simple and it can be easily generalized to more difficult problems. The obtained results compared with reliable sources in order to examine the accuracy of compiling code.

Keywords: Ablation rate, surface recession, interior temperaturedistribution, non charring material ablation, Newton Rafson method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
1958 Geometrical Structure and Layer Orientation Effects on Strength, Material Consumption and Building Time of FDM Rapid Prototyped Samples

Authors: Ahmed A. D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: Building orientation, compression strength, rapid prototyping, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1689
1957 Closed Form Solution to problem of Calcium Diffusion in Cylindrical Shaped Neuron Cell

Authors: Amrita Tripathi, Neeru Adlakha

Abstract:

Calcium [Ca2+] dynamics is studied as a potential form of neuron excitability that can control many irregular processes like metabolism, secretion etc. Ca2+ ion enters presynaptic terminal and increases the synaptic strength and thus triggers the neurotransmitter release. The modeling and analysis of calcium dynamics in neuron cell becomes necessary for deeper understanding of the processes involved. A mathematical model has been developed for cylindrical shaped neuron cell by incorporating physiological parameters like buffer, diffusion coefficient, and association rate. Appropriate initial and boundary conditions have been framed. The closed form solution has been developed in terms of modified Bessel function. A computer program has been developed in MATLAB 7.11 for the whole approach.

Keywords: Laplace Transform, Modified Bessel function, reaction diffusion equation, diffusion coefficient, excess buffer, calcium influx

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1943