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Abstract—Calcium [Ca
2+] dynamics is studied as a potential form

of neuron excitability that can control many irregular processes like
metabolism, secretion etc. Ca

2+ ion enters presynaptic terminal and
increases the synaptic strength and thus triggers the neurotransmitter
release. The modeling and analysis of calcium dynamics in neuron
cell becomes necessary for deeper understanding of the processes
involved. A mathematical model has been developed for cylindrical
shaped neuron cell by incorporating physiological parameters like
buffer, diffusion coefficient, and association rate. Appropriate initial
and boundary conditions have been framed. The closed form solution
has been developed in terms of modified Bessel function. A com-
puter program has been developed in MATLAB 7.11 for the whole
approach.

Keywords—Laplace Transform, Modified Bessel function, reaction
diffusion equation, diffusion coefficient, excess buffer, calcium influx
.

I. INTRODUCTION

CALCIUM [Ca2+] domains are of importance for under-
standing fast [Ca2+] entry through the synaptic transmis-

sion. Synaptic transmission is the process that regulates the
information from one part of the body to other part through
the chemical molecules. Calcium dynamics provides the better
understanding of chemical signaling in neuron cell.
Mathematical modelling has played the crucial role in solving
many real life problems. The development of digital comput-
ers and computational sciences has increased the scope of
application of mathematics, in solving problems of science,
technology and biology etc. The problem of biology is more
challenging for mathematics in comparison to the problem
of science and technology. The analytical and numerical
techniques have been widely used by the research workers in
biology science and technology etc. However it is preferable
to obtain analytical solution than a numerical solution to any
problem. But when we include more-more details of parame-
ters and the problem becomes more complicated and analytical
methods fails in giving solution of such problems. Thus one
has to switch over to numerical techniques for solution. Here
an attempt has been made to use analytical method in solving
one dimensional problem of calcium diffusion in neuron cell.
The analytical description of mathematical model is given by
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The calcium kinetics in neuron is governed by a set of
reaction-diffusion equation given by [7, 13, 1]:
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Rj = −k+j [Bj]
[
Ca2+

]
+ k−j [CaBj ] (6)

where [Bj ] and [CaBj ] are free and bound buffer
respectively. j is an index over buffer species. The resulting
partial differential equations for equation (1) using Fickian
diffusion can be stated as [8]. DCa, DBj

, DCaBj
are

diffusion coefficients of free calcium, free buffer and Ca2+

bound buffer respectively. k+j andk−j are association and
dissociation rate constants for buffer j respectively. [Ca2+]∞
is background calcium concentration. For stationary immobile
buffers or fixed buffers.

Initial studies were the experimental investigations made
with fruitful results by T. Meyer and L. Stryer [18], obtained
the results using the molecular modelling for receptor of
Calcium profile. E. Neher [5], they performed analysis on the
linearized buffered [Ca2+] diffusion in micro domains; Smith
and Keizer [12] modeled the above-mentioned phenomenon
for a spherically symmetric region to estimate rapid buffering
approximation near an open [Ca2+] channel. Some theoretical
investigations have also been carried out during the last few
decades. K. R. Pardasani and N. Adlakha [15] give the exact
solution of to a Heat Flow Problem in Peripheral Tissue
Layers with a Solid Tumor in the Dermis. S. Tewari and K. R.
Pardasani [16] studied the finite element model to study the
cytosolic [Ca2+] concentration with one and two dimensions.
S. Tewari and K. R. Pardasani [17] obtained the solution of
existing mathematical model of system of reaction-diffusion
equations of cytosolic [Ca2+] concentration for excess buffer
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approximation (EBA) and other is rapid buffer approximation
(RBA). B. Jha et al.[4] studied the Finite Volume Model to
Study the Effect of Buffer on Cytosolic Ca2+ Advection
Diffusion in astrocyte cell. A. Tripathi and N. Adlakha [1]
obtained the finite volume model to study calcium diffusion
in spherical shaped neuron cell. A. Tripathi and N. Adlakha
N [2, 3] have also obtained the calcium distribution in neuron
cell using finite element method for one and two dimensions
in polar coordinates. Here an attempt has been made to
study [Ca2+] dynamics in neuron cell by using modified
Bessel function for one dimensional unsteady state case in
polar cylindrical coordinates. A computer program has been
developed in MATLAB 7.11 for the entire problem and
simulated on Core i3 processor with 2.13 GHz processing
speed, 64-bit machine with 320 GB memory. Numerical
values of physiological parameters have been used to study
the calcium concentration.

II. MATHEMATICAL FORMULATION

The model given by equation (1) has been developed in
polar cylindrical coordinates for a one-dimensional unsteady
state case as:
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Where [B]∞ and [Ca2+]∞are the buffer concentration and
calcium concentration respectively. It is assumed that neuron
is of cylindrical shape and radius r=5μm [19].

The initial and boundary conditions governing the calcium
diffusion are given by:
Initial Condition [

Ca2+
]
t=0

= 0.1μM (8)

Boundary Conditions
At r=0, assuming the point source of calcium concentration.
Thus boundary condition can be given as [6, 19]:

lim
r→0

(−2πrDCa

∂
[
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) = σCa (9)

It is also assumed that background concentration of [Ca2+]
is 0.1 μ M and as it goes far away from the source boundary
condition:

lim
r→5

[
Ca2+

]
= 0.1μM (10)

Using suitable transformation, the problem is transformed
into simpler form without making any further simplifying any
assumptions and retaining the realistic properties of parame-
ters:
Substituting [Ca2+]=[Ca2+]-[Ca2+]∞ in equation (7-10), the
following partial differential equation is obtained:
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The transformed initial and boundary conditions are given
by:
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Applying Laplace transform [11] on both sides of the
equation (11-14) we get the following solution,(
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Where ̂[Ca2+] is the Laplace transforms of [Ca2+] and
transformed initial and boundary conditions are:
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After using the transformations, the realistic properties of
parameters, such that analytical solution is obtained in terms
of modified Bessel function. The solution of Bessel equation
(19) is,
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At the solution r → ∞ is not finite, it becomes:
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Finally taking inverse Laplace transform of equation (21)
we get the following solutions,
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where

λ = k+m [B]
∞
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TABLE I
LIST OF PHYSIOLOGICAL PARAMETERS USED IN NUMERICAL RESULTS

Symbol Parameter Values
DCa diffusion coefficient 250 μm2/s

k+
j

EGTA buffer association rate 1.5
μM−1s−1

k+
j

BAPTA buffer association rate 600
μM−1s−1

k+
j

Troponine buffer association rate 90
μM−1s−1

k+
j

Calmodulin buffer association rate 250
μM−1s−1

[B]∞ total buffer concentration 50μM
[Ca2+]∞ background Calcium concentration 0.1μM

σ flux 1pA
r radius 5μm

III. RESULTS AND DISCUSSION

The numerical values of physical and physiological
parameters used for computation of numerical results are
given:
m=meter, s= second, M= Mole

Fig. 1 shows the radial distribution of calcium concentration in
neuron cell for exogenous buffer EGTA and BAPTA at buffer
concentration taken to be 50 μM. The Ca2+ concentration is
maximum near the source along radial direction. The Ca2+

concentration near the source for EGTA is very significantly
high than that for BAPTA. For EGTA is Ca2+ concentration
false down sharply between r=0 μm to r=0.5 μm, and then
falls down gradually between from r=0.5 μm to r=1.5 μm
and finally converges its minimum value of Ca2+ profile 0.1
μM. For BAPTA the maximum Ca2+ concentration near the
source is 0.4 μM and falls down gradually between r=0 μm
to r=0.5 μm and again its minimum value of Ca2+ its 0.1
μM beyond r=5 μ m. The difference in EGTA and BAPTA is
due to the fact that EGTA is slow buffer and BAPTA is fast
chelator.
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Fig. 1. Radial distribution of calcium concentration for the exogenous buffers
EGTA and BAPTA

Fig. 2 shows the radial distribution of calcium concentration
in neuron cell for endogenous buffer the ∧ curve represents
Troponine-c and ’:’ curve represents Calmoduline-D28k.at
buffer concentration taken to be 50 μM. The Ca2+ concentra-
tion is maximum near the source along radial direction. The

Ca2+ concentration near the source for Troponine is very
significantly high than that for Colmoduline. For Troponine
is Ca2+ concentration false down sharply between r=0 μm to
r=0.5 μm, and then becomes constant between r=0.5 μm to r=5
μm and finally approaches its minimum value of Ca2+ profile
0.1 μM. For Colmoduline the maximum Ca2+ concentration
near the source is 1.2 μM and falls down sharply between
r=0 μm to r=0.5 μm and again its minimum value of Ca2+

its 0.1 μM beyond r=5 μm. The difference in Troponine and
Colmoduline is due to the fact that Troponine is slow chelator
and Colmoduline is fast chelator.
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Fig. 2. Radial distribution of calcium concentration for the endogenous
buffers Troponine and colmoduline

Fig. 3 shows the radial distribution on Ca2+ concentration
profiles for EGTA buffer with buffer concentration 50 μM
and different values of flux. It is observed that the calcium
concentration is higher for higher values of flux sigma= 4
pA this profile near the source and they converge to Ca2+

concentration is 0.1 μM after r=1.5 μm. This implies that
the flux is significant effect on Ca2+ concentration near the
source.
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Fig. 3. Radial distribution of calcium concentration with different values of
flux

Fig. 4 shows the temporal variation on calcium concentra-
tion profiles, at radial points (r = 1 μm, 2.5 μm, 5 μm) for
diffusion cofficient 250. The Ca2+ concentration rises sharply
at the free radial points between t=0 ms to t=10 ms, and
there after achieve the steady states. The rising concentration
profiles much higher at radial point 1 μm that is near the
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source as compared to that at other radial points away from
the source.
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Fig. 4. Temporal distribution of calcium concentration with different values
of radius at diffusion coefficient 250

Fig. 5 also shows temporal variation on Ca2+ concentration
diffusion cofficient 10 at different radial points. The rise in
Ca2+ concentration is significantly high at radial point r= 1
μm between t=0 ms to 100 ms in comparison to that at other
radial points away from the source. On comparing figure 4
and 5 that rise in Ca2+ concentration for diffusion cofficient
10 is high value in comparison for longer period of time
in that for diffusion cofficient 250 that where the rise in
Ca2+ profile is very sharp for a small period of time. This
is because, the diffusion cofficient is directly prapotional to
Ca2+ concentration.
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Fig. 5. Temporal distribution of calcium concentration with different values
of radius at diffusion coefficient 10

IV. CONCLUSION

The mathematical models developed give us interesting
results regarding relationships among various parameters like
Ca-concentration, diffusion coefficients, radius, buffer etc.
such models can be developed to generate information for
better insights and understanding of the problem.
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