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Abstract—In this study, we develop local meshfree methods
known as radial basis function-generated finite difference (RBF-FD)
method and Hermite finite difference (RBF-HFD) method to design
stencil weights and spatial discretization for Helmholtz equation. The
convergence and stability of schemes are investigated numerically
in three dimensions with irregular shaped domain. These localized
meshless methods incorporate the advantages of the RBF method,
finite difference and Hermite finite difference methods to handle
the ill-conditioning issue that often destroys the convergence rate of
global RBF methods. Moreover, numerical illustrations show that the
proposed localized RBF type methods are efficient and applicable for
problems with complex geometries. The convergence and accuracy
of both schemes are compared by solving a test problem.

Keywords—Radial basis functions, Hermite finite difference,
Helmholtz equation, stability.

I. INTRODUCTION

THE 3-D Helmholtz equation considered in this work is

expressed as

∇2u(x) + k2u(x) = f(x), x ∈ Ω, (1)

u(x) = ū(x), x ∈ Γ (2)

where ∇2 is the Laplacian operator, k is the wave number,

unknown u usually represents a pressure field in the frequency

domain, f denotes the source function and ū is a known

function on Γ = ∂Ω.

All acoustic radiation problems can be modeled as the wave

equation subject to certain initial and boundary conditions.

For a constant frequency case, the problem reduces to solving

the Helmholtz equation (1), subject to certain boundary

conditions. The Helmholtz equation sounds simple but in

reality the analytic solution to the Helmholtz equation exists

only for certain types of source geometry that the Helmholtz

equation is separable. In most engineering applications the

source geometry is arbitrary, so the analytic solution to the

Helmholtz equation cannot be found. In these circumstances,

a numerical method should be developed to approximate

solutions.

For numerically solving the Helmholtz equation, there

are mainly finite difference methods [1] and finite element

methods [2]. But in high dimensional Helmholtz problems,

applying the mentioned methods has high computational costs

and in irregular shaped domains getting good accuracy is

very difficult and time consuming. Therefore in this work
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we employ the RBFs which are one of primary tools to

interpolate multidimensional data. In the past decade, meshfree

methods based on RBFs have received increased attention

in approximating a solution for partial differential equations

(PDEs) on regular and irregular domains. While spectral

convergent property for these global numerical methods

will be accessible if proper attention is paid to boundary

conditions, they generally lead to large, ill-conditioned and

full linear systems. RBF approximation is applied to solve

option pricing problems in one and two spatial dimensions

in [3], and numerical results show that RBF type method

performs better than finite difference method. In [4], authors

solved a forward Kolmogorov problem by using a meshfree

method, and they got promising results. In [5] the RBFs

meshless method is applied for the numerical solution of

the nonlinear Benjamin-Bona-Mahony-Burgers equation on

different domains. Also, they obtain a time semi-discretization

method using forward finite difference scheme and a full

discretization strategy by using the meshless method based

on radial basis functions (RBFs) and Kansa’s approach. In

[6], authors first approximate the time fractional derivative

of nonlinear Schrödinger equation by a scheme of order

2−α then use the Kansa approach to approximate the spatial

derivatives. Also, RBF-based numerical strategies is employed

to find a solution for the nonlinear sine-Gordon equation in

[7].

In all of these mentioned global meshfree techniques,

developed RBF collocation methods are leading to full

linear systems, and have high computational costs basically

when the number of dimensions increase. Localized RBF

approximations such as the RBF partition of unity collocation

method (RBF-PUM) and RBF-FD [8], [9] give an answer to

deal with these issues. However, in the RBF-PUM finding

the optimal number of patches in the domain of solution

is a challenging problem and needs more computational

considerations. The combination of meshfree and finite

difference method known as RBF-FD method has been

introduced and developed in [10]-[11]. Then, a generalization

of the RBF-FD method that computes RBF-FD weights in

finite-sized neighborhoods around the centers of RBF-FD

stencils is developed in [12]. Moreover, in [13], we consider

RBF-FD and Hermite finite difference methods for designing

stencil weights and spatial discretization for time dependent

PDEs of convection-diffusion-reaction type to show efficiency

and applicability of this localized meshfree method.

In the present work, we consider RBF-FD and RBF-HFD

methods for the approximation of the differential operator in

Helmholtz problem. The aim of employing these methods is
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to improve the accuracy of the solution without increasing the

stencil size, which is the usual way to increase the accuracy

in the localized RBF methods. In the RBF-HFD scheme,

the improvement in accuracy is obtained by using additional

information from the PDE itself, rather than increasing the

stencil size. Moreover, we show that the proposed methods

lead to sparse matrices and we can control the computational

costs and finally, numerical discussions confirm that the

developed methods are efficient in complex geometries.

A. RBF-FD Methodology

To avoid mesh generation, in recent years meshless

techniques have attracted the attention of researchers. In a

meshless method a set of scattered nodes is used instead of

meshing the domain of the problem. The technique of RBFs is

one of the most recently developed meshless methods that has

been used for different type of problems. The main advantages

of RBF methods are as follow:

• No need for a mesh/triangulation.

• Simple implementation and dimension independence.

• No staircasing/polygonization for boundaries.

• Depending on chosen RBFs, high-order/spectral

convergence can be achieved.

• Easy to implement derivatives and boundary conditions.

Firstly, in 1971 as a multidimensional scattered interpolation

method, RBFs were developed by Hardy in modeling of

the earth’s gravitational field [14]. The application of RBFs

based on collocation in a set of scattered nodes for the

solution of PDEs was first proposed by Kansa [15]. Kansa’s

method was recently extended to solve various ordinary and

partial differential equations, for instance see [16]-[17] and the

references therein.

We consider a spatial domain Ω ⊂ R
d and a set of distinct

points X = {x1, x2, ..., xN} in Ω. Also, let φ : Ω × Ω → R

be a kernel with the property φ(x, y) := φ(‖x − y‖) for

x, y ∈ Ω, and ‖ · ‖ is the Euclidean norm. Kernels with this

property known as radial functions. In Table I some globally

supported RBFs are listed which are commonly employed

in the literature. The positive constant ε appearing in RBFs

is called the shape parameter which dictates the flatness of

the radial basis function and also has a key role on the

convergence rate of the approximations and the condition

number of the coefficient matrices specifically for global

methods. For more details about basic properties and types of

radial basis functions, compactly and globally supported and

also their wide applications in scattered date interpolations,

the interested reader would be referred to recent works in this

topic [18]-[19].

The RBF interpolant for a continuous target function u :
Ω → R known at the nodes in X takes the form

IX,u(x) =
N∑
j=1

λjφ(‖x − xj‖) +
l∑

j=1

νjpj(x), (3)

where ‖.‖ is the Euclidean norm, and {pj(x)}lj=1 denote basis

of
∏d

k−1, which is space of d-variate polynomials of total

degree ≤ k−1, where k is order of φ. If a polynomial space of

TABLE I
SOME WELL-KNOWN FUNCTIONS THAT GENERATE GLOBALLY

SUPPORTED RBFS

Name of function Definition

Thin plate splines (TPS) (−1)k+1r2k log(r)
Gaussian (GA) exp(−ε2r2)
Invers multiquadrics (IMQ) 1√

r2+ε2

multiquadrics (MQ)
√
r2 + ε2

Conical splines r2k+1

degree k− 1 is employed for pj(x), then l =

(
k + d− 1

d

)
see [20].

The interpolation coefficients {λj}Nj=1 and {νj}lj=1 are

determined by imposing the following conditions

IX,u(xj) = u(xj), j = 1, 2, . . . , N

N∑
j=1

λjpk(xj) = 0, k = 1, 2, . . . , l.

This results in a symmetric system of linear equations(
Φ P
P� 0

)(
λ
ν

)
=

(
u
0

)
(4)

where

Φi,j = φ(‖xi − xj‖), i = 1, 2, ..., N, j = 1, 2, ..., N

Pi,j = pj(xi), i = 1, 2, ..., N, j = 1, 2, ..., l

and λ = [λ1, λ2, . . . , λN ]�, ν = [ν1, ν2, . . . , νl]
� and

u = [u(x1), u(x2), . . . , u(xN )]�. When the points in X
are chosen to be distinct and φ is a positive-definite radial

kernel or order k = 1 conditionally positive-definite kernel on

R
d, the coefficient matrix of system (4) is guaranteed to be

non-singular, see [21].

Now, let Xj = {x(j)
1 , . . . , x(j)

n } ⊂ X be a subset containing

xj and its n− 1 nearest neighboring points forming a stencil

with xj as center and n � N . The number of points n in

each stencil can be either constant or vary with j. In the

RBF-FD approach any linear differential operator L acting

on u(x) evaluated at xj , is approximated by a linear weighted

combination of the function values of u at the points of Xj ,

Lu(xj) ≈
n∑

k=1

w
(j)
k u(x(j)k ). (5)

The RBF-FD weights, w
(j)
k , k = 1, . . . , n, are found by

enforcing that the approximation is exact within the space

spanned by the RBFs {φ(‖x−x(j)
i ‖)}ni=1, centered at the nodes

x(j)
i , i = 1, . . . , n and solving the following linear system of

equations (
Φ P
P� 0

)(
w(j)

v(j)

)
=

(
(Lφ(‖xj − x(j)i ‖)ni=1)

�

((Lpk(xj))lk=1)
�

)
(6)
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where w(j) = [w
(j)
1 , w

(j)
2 , . . . , w

(j)
n ]� and v(j) =

[v
(j)
1 , v

(j)
2 , . . . , v

(j)
l ]�. In the solution w

(j)
1 , w

(j)
2 , . . . , w

(j)
n are

the weights applied to data at nodes x
(j)
i for i = 1, 2, . . . , n.

The rest of the solution vector v(j) are discarded.

We have to solve this (n + l) × (n + l) linear system

for each stencil center xj , j = 1, . . . , N to form the N
rows of the sparse differentiation matrix with n non-zeros

per row. In the context of time-dependent PDEs, the stencil

weights remain constant for all time-steps when the nodes

are stationary. With RBF-FD, the solutions are expected to

converge algebraically and the system matrices are sparse and

banded. For small shape parameter case with Gaussian RBF

and RBF-QR, method can be used to generate the stencil

weights in a stable way [22], [23].

Obviously, since (n+ l) � N the size of the linear systems

(6) is much smaller than the size N ×N of the linear system

of a global RBF collocation method. A global RBF method to

derive a differentiation matrix needs O(N3) operations, and

results in a dense matrix. In the RBF-FD method we only

need O((n + l)3) operations for each of the N stencils, so

that the total cost of computing is O((n + l)3N), without

taking into account the cost of determining the stencil grids.

For n + l fixed with (n + l) � N , the total cost will be

O(N) for increasing N . The weights can be computed by

inverting the local distance matrices Φ of order n×n for each

stencil. These distance matrices depend only on the distance of

the grid points implying that for uniform grids we only need

to compute the inverse of one local distance matrix. Further,

the differentiation matrix for one stencil is independent from

those for the other stencils. Hence their computation can be

parallellized to increase the efficiency of RBF-FD method in

high dimensional problems and adaptive algorithms.

B. RBF-HFD Methodology

In this section we review Hermite interpolation with RBFs

proposed first by Wu [24], and in continue we derive

RBF-HFD scheme by using Hermite interpolation with RBFs.

In the Hermite interpolation problem we find a function

IX,u(x) that interpolates u at the distinct nodes xi, i = 1, ..., N ,

and interpolates Lu at x̃j , j = 1, 2, ..., Q where L is a linear

differential operator. To clarify the notation, assume that u is

given at the nodes x1, x2, ..., xn and Lu is given at the nodes

x̃1, x̃2, ..., x̃Q. Then Hermite interpolant with RBFs takes the

form

IX,u(x) =
N∑
j=1

λjφ(‖x − xj‖) +
Q∑

j=1

ϑjL2φ(‖x − x̃j‖)

+

l∑
j=1

νjpj(x), (7)

and the interpolation coefficients {λj}Nj=1, {ϑj}Qj=1 and

{νj}lj=1 are determined by imposing the following conditions

IX,u(xj) = u(xj), j = 1, 2, . . . , N

L(IX,u)(x̃j) = L(u(x̃j)), j = 1, 2, . . . , Q

N∑
j=1

λjpk(xj) = 0, k = 1, 2, . . . , l.

This results in a symmetric system of linear equations⎛
⎝ Φ Ψ2 P

Ψ1 Ψ12 0
P� 0� 0

⎞
⎠

⎛
⎝ λ

ϑ
ν

⎞
⎠ =

⎛
⎝ u

Lu
0

⎞
⎠ (8)

where Φ,P,λ and ν were defined before and

(Ψ2)i,j = L2φ(‖xi − x̃j‖), i = 1, 2, ..., N, j = 1, 2, ..., Q

(Ψ1)i,j = L1φ(‖x̃i − xj‖), i = 1, 2, ..., Q, j = 1, 2, ..., N

(Ψ12)i,j = L1L2φ(‖x̃i − x̃j‖), i, j = 1, 2, ..., Q,

and ϑ = [ϑ1, ϑ2, . . . , ϑQ]
� and Lu =

[Lu(x̃1),Lu(x̃2), . . . ,Lu(x̃Q)]
�. Also, in the above

definitions of matrices elements L1 and L2 stand that

L is applied to φ with respect to its first and second

arguments, respectively. If radial basis function φ is a positive

definite or conditionally positive definite of order-1, then the

linear system (8) is nonsingular [24], [25].

The main goal of using RBF-HFD is to increase the

accuracy of the approximation (5) without increasing the

stencil size. Now for deriving RBF-HFD scheme, let Xj =

{x(j)1 , . . . , x(j)
n } ⊂ X = {x1, . . . , xn} be a subset containing

xj and its n− 1 nearest neighboring points forming a stencil

with xj as center and n � N . In the RBF-HFD approach

any linear differential operator D acting on u(x) evaluated at

xj , is approximated by a linear weighted combination of the

function values of u at the points of Xj and Du at the points

of X̃j = {x̃(j)
1 , . . . , x̃(j)

q } for q � Q,

Du(xj) ≈
n∑

k=1

w
(j)
k u(x(j)k ) +

q∑
k=1

w̃
(j)
k Lu(x(j)k ). (9)

The RBF-HFD weights, w
(j)
k for k = 1, . . . , n and w̃

(j)
k for

k = 1, . . . , q are found by enforcing that the approximation

is exact within the space spanned by the RBFs {φ(‖x −
x(j)i ‖)}ni=1 centered at the nodes x(j)

i , i = 1, . . . , n and

{L2φ(‖x− x̃(j)
i ‖)}qi=1 centered at the nodes x̃(j)i , i = 1, . . . , q

and {pj(x)}lj=1. This can be written as the following linear

system ⎛
⎝ Φ Ψ2 P

Ψ1 Ψ12 0
P� 0� 0

⎞
⎠

⎛
⎝ w(j)

w̃(j)

v(j)

⎞
⎠ =

⎛
⎜⎝ (D1φ(‖xj − x(j)i ‖)ni=1)

�

(D1L2φ(‖xj − x(j)i ‖)qi=1)
�

((Dpk(xj))lk=1)
�

⎞
⎟⎠ (10)

where D1 stands that D is applied to φ with respect to its

first argument. Note that the rest of the solution vector v(j)
are discarded.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:18, No:5, 2024 

44International Scholarly and Scientific Research & Innovation 18(5) 2024 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:1
8,

 N
o:

5,
 2

02
4 

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/1

00
13

62
8.

pd
f



C. Numerical Results

In this section, we present a numerical example to compute

the solution of fractional convection-diffusion-reaction

problem using the RBF-FD and RBF-HFD methods and show

efficiency and applicability of presented numerical method.

We are using MATLAB with a 3.6 GHz Corei3 processor

to do all computations. In our computation, we employ the

multiquadric φ(r) =
√
ε2 + r2 as radial basis function. To

illustrate the accuracy of method, we compute the following

error norms:

L∞ = max
1≤j≤N

∣∣uexact(xj)− unumerical(xj)
∣∣ ,

RMS =

√√√√ 1

N

N∑
j=1

(uexact(xj)− unumerical(xj))
2
,

where N is the number of the test points, unumerical(xj) and

uexact(xj) denote the numerical and analytical solutions at the

jth test point, respectively. The errors are evaluated over 2046
test points which are perturbed randomly in the direction of

the boundary.

Example 1. Consider the following three-dimensional

Helmholtz problem

∇2u(x) + u(x) = 0, x ∈ Ω.

Boundary conditions at the surface are chosen based on the

exact solution

u(x, y, z) = cos(x) + sin(y) + sin(z),

where Ω is a solid domain bounded by the surface

x2 + y2 + z2 − sin (2x)2 sin (2y)2 sin (2z)2 = 1. (11)

Fig. 1 shows the solid domain bounded by the surface

equation (11). The L∞ and RMS errors and CPU times

are reported in Table 1. Comparison between the presented

methods shows that the RBF-HFD method is more accurate.

Fig. 1 The solid domain bounded by the surface equation (11)

TABLE II
COMPARISON OF ERRORS FOR EXAMPLE 1

Methods n q L∞ RMS CPU time(s)
RBF-FD 27 0 8.3774e-04 3.0722e-04 4.75
RBF-FD 40 0 3.7623e-05 1.4537e-05 5.39

RBF-HFD 27 26 5.5677e-05 1.9210e-05 5.81
RBF-HFD 40 39 2.4231e-06 3.8299e-07 7.25

II. CONCLUSION

For approximation of differential operator in this study we

employ two localized meshfree techniques known as RBF-FD

and RBF-HFD schemes which result in sparse matrices

as well as the standard FD method, but with the added

advantage that the RBF method can naturally handle irregular

geometries, we compared RBF-FD and RBF-HFD methods in

irregular domain, and numerical results show the efficiency

and performance of both RBF-FD and RBF-HFD methods,

but RBF-HFD is more accurate than RBF-FD in irregular

geometry of solution domain.
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