Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32716
Daily Global Solar Radiation Modeling Using Multi-Layer Perceptron (MLP) Neural Networks

Authors: Seyed Fazel Ziaei Asl, Ali Karami, Gholamreza Ashari, Azam Behrang, Arezoo Assareh, N.Hedayat


Predict daily global solar radiation (GSR) based on meteorological variables, using Multi-layer perceptron (MLP) neural networks is the main objective of this study. Daily mean air temperature, relative humidity, sunshine hours, evaporation, wind speed, and soil temperature values between 2002 and 2006 for Dezful city in Iran (32° 16' N, 48° 25' E), are used in this study. The measured data between 2002 and 2005 are used to train the neural networks while the data for 214 days from 2006 are used as testing data.

Keywords: Multi-layer Perceptron (MLP) Neural Networks;Global Solar Radiation (GSR), Meteorological Parameters, Prediction.

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2920


[1] S. Rehman, M. Mohandes, Artificial neural network estimation of global solar radiation using air temperature and relative humidity, Energy Policy .63 (2008) 571-576.
[2] M.A. Behrang, E. Assareh, A.R. Noghrehabadi, and A. Ghanbarzadeh. New sunshine-based models for predicting global solar radiation using PSO (particle swarm optimization) technique. Energy 2011; 36: 3036- 3049. doi:10.1016/
[3] K. Bakirci, Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey, Energy (2009), doi: 10.1016/
[4] A. Angstrom, Solar and terrestrial radiation, Journal of the Royal Meteorological Society.50 (1924) 121-126.
[5] V. Bahlel, H. Bakhsh, R. Srinivasan, A correlation for estimation of global solar radiation, Energy. 12(2) (1987) 131-5.
[6] J. Almorox, C. Hontoria, Global solar estimation using sunshine duration in Spain, Energy Conversion and Management. 11 (1967) 170- 2.
[7] B.G. Akinoglu, A. Ecevit, Construction of a quadratic model using modified Angstrom coefficients to estimate global solar radiation, Solar Energy. 45 (2) (1990) 85-92.
[8] S. Rehman, Solar radiation over Saudi Arabia and comparison with empirical models, Energy .23 (12) (1998) 1077-1082.
[9] R. Aguiar, M. Collares-Pereira, A time dependent autoregressive, Gaussian model for generating synthetic hourly radiation., Solar Energy. 49 (1992) 167-174.
[10] G. lewis, Estimates of irradiance over Zimbabwe, Solar Energy. 31 (1983) 609-612.
[11] R.K. Swartman, O. Ogunlade, Solar radiation estimates from common parameters. Solar Energy 11 (1967) 170-172.
[12] Y.A.G Abdallah, New correlation of globar solar radiation with meteorological parameters for Bahrain. Solar Energy 16 (1994) 111-120.
[13] J.I. Prieto, J.C.Martines-Garcia, D. Garcia, Correlation between global solar irradiation and air temperature in Asturias, Spain, Sol. Energy (2009), doi: 10.1016/j.solener.2009.01.012.
[14] A. Azadeh, A. Maghsoudi and S.Sohrabkhani, An integrated artificial neural networks approach for predicting global radiation. Energy Conversion and Management doi: 10.1016/j.enconman.2009.02.019.
[15] D. Elizondo, G. Hoogenboom and R. McClendon, Development of a neural network to predict daily solar radiation, Agricultural and Forest Meteorology.71 (1996) 115-132.
[16] S.M. Al-Alawi, H.A. Al-Hinai, An ANN-based approach for predicting global solar radiation in locations with no measurements, Renewable Energy. 14 (1-4) (1998) 199-20.
[17] I.T. Togrul, E. Onat, A study for estimating the solar radiation in Elaz─▒g╦ÿ using geographical and meteorological data, Energy Conversion and Management. 40 (1999) 1577-1584.
[18] A. Sozena, E. Arcaklioglub, M. Ozalpa, E.G. Kanitc, Use of artificial neural networks for mapping of solar potential in Turkey, Applied Energy. 77 (2004) 273-286.
[19] S.M. Robaa, Validation of existing models for estimating global solar radiation over Egypt, Energy Conversion and Management. 50 (2009) 184-193.
[20] M.A. Behrang, E. Assareh, A. Ghanbarzadeh, A.R. Noghrehabadi. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Solar Energy 2010; 84: 1468-1480.
[21] M.Mohandes, S.Rehman and T.O.Halawani, Estimation of global solar radiation using artificial neural networks, Renewable Energy. 14 (1-4) (1998) 179-184.
[22] M.Mohandes, A.Balghonaim, M.Kassas, S.Rehman, T.O.Halawani, Use of radial basis functions for estimating monthly mean daily solar radiation, Solar Energy. 68 (2) (2000) 161-168.
[23] L.Hontoria, J.Aguilera, J.Riesco, P.J. Zufiria, Recurrent neural supervised models for generating solar radiation, Journal of Intelligent& Robotic Systems. 31 (2001) 201-221.
[24] L.Hontoria, J. Aguilera, P.J. Zufiria, Generation of hourly irradiation synthetic series using the neural network multilayer perceptron, Solar Energy. 75 (2) (2002) 3441-446.
[25] I.Tasadduq, S.Rehman, K. Bubshait, Application of neural networks for the prediction of hourly mean surface temperature in Saudi Arabia, Renewable Energy. 25 (2002) 545-554.
[26] F.S.Tymvios, C.P. Jacovides ,S.C.Michaelides, C. Scouteli, Comparative study of Angstrom-s and artificial neural networks- methodologies in estimating global solar radiation, Solar Energy. 78 (2005) 752-762.
[27] J.L. Boscha, G. Lopez, F.J. Batllesa, Daily solar irradiation estimation over a mountainous area using artificial neural networks, Renewable Energy. 33 (2008) 1622-1628.
[28] J. Mubiru, E.J.K.B. Banda, Estimation of monthly average daily global solar irradiation using artificial neural networks, Solar Energy. 82 (2008) 181-187.
[29] D.T. Pham, E. Koç, A. Ghanbarzadeh, S. Otri, Optimisation of the Weights of Multi-Layered Perceptrons Using the Bees Algorithm. in: Proceedings of 5th International Symposium on Intelligent Manufacturing Systems, Sakarya University, Department of Industrial Engineering, May 29-31, 2006, pp. 38-46
[30] A.S. Yilmaz, Z. Ozer, Pitch angle control in wind turbines above the rated wind speed by multi-layer percepteron and Radial basis function neural networks, Expert Systems with Applications. 36 (2009) 9767- 9775.
[31] D.T. Pham, X. Liu, Neural Networks for identification, prediction and control, Springer verlag, london,1995.
[32] C.M. Bishop, Neural Networks for Pattern Recognition, Clarendon Press, Oxford, 1995.