Bound State Solutions of the Schrödinger Equation for Hulthen-Yukawa Potential in D-Dimensions
Authors: I. Otete, A. I. Ejere, I. S. Okunzuwa
Abstract:
In this work, we used the Hulthen-Yukawa potential to obtain the bound state energy eigenvalues of the Schrödinger equation in D-dimensions within the frame work of the Nikiforov-Uvarov (NU) method. We demonstrated the graphical behaviour of the Hulthen and the Yukawa potential and investigated how the screening parameter and the potential depth affected the structure and the nature of the bound state eigenvalues. The results we obtained showed that increasing the screening parameter lowers the energy eigenvalues. Also, the eigenvalues acted as an inverse function of the potential depth. That is, increasing the potential depth reduces the energy eigenvalues.
Keywords: Schrödinger's equation, bound state, Hulthen-Yukawa potential, Nikiforov-Uvarov, D-dimensions
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 456References:
[1] C. Birkdermir. Application of the Nikiforov-Uvarov method in Quantum Mechanics, Chapter 11 in Theoretical Concept of Quantum Mechanics, Ed. M.R. Pahlavani (2012).
[2] A. N. Ikot, U. Okorie, A. T. Ngiangia, C. A. Onate, C. O. Edet, I. O. Akpan and P.O Amadi. Eclética Químíca Journal, Vol. 45, n.1, 65-76 (2020). DOI: 10.26850/1678-4618eqj.v 45_1_p 65-76
[3] H. Karayer, D. Demirhan and F. Büyükkilic, Journal of Mathematical Physics 56, 063504 (2015); doi 10.1063/1.4922601
[4] C. O. Edet, U. S. Okorie, A.T. Ngiangia and A. N. Ikot. Indian J. Phys. 94, 425-433, (2019).
[5] S. Meyur, and S. Debnath. Lat. Am. J. Phys. Educ. Vol. 4 No 3 (2010).
[6] A. N. Ikot,Oladunjoye, A. Awoga,H. Hassanabadi and E. Maghsoodi. Commun. Theor. Phys.61 457-463 (2014).
[7] L. D. Landau and E. M lifshitz. Energy and Momentum Chapter 11 in Quantum Mechanics non- relativistic Theory. 2nd Edition Vol. 3 (1958).
[8] I. B. Okon, O. Popoola and E. E. Ituen. International Journal of Recent advances in Physics (IJRAP) (2016) DOI: 10.14810/ijrap.2016.
[9] B. Boyacioglu, M. Saglam and A. Chatterjee. J. Phys.: Condens. Matter 19 456217 (2007).
[10] C. A. Onate, O. Ebomwony and D. B. Olanrewaju https://doi.org/10.1016/j.heliyon. 2020. e04062
[11] S. M. IkhdairPhysica Scripta 83 (025002): 7 (2011).
[12] C. O. Edet, P. O. Okoi, A. S. Yusuf, P. O. Ushie and P. O. AmadiIndian Journal of Physics (2020).
[13] J. P. Edwards, U. Gerber,C. Schubert, M. A. Trejo and A. Weber. Prog. Theor. Exp. Phys. 083A01 (2017).
[14] B. Gönül and K. Köksal. Physical Scripta Vol. 75 p. 686-690 (2006). DOI: 10.1088/0031_8949/75/5/017
[15] O. Yesiltas M. Simsek, R. Sever and C. Tezcan.PhysicaScripta 67 (6) (2003). DOI: 10.1238/Physica Regular. 067a00472.
[16] C. Tezcan and R Sever. Int. J. Theor. Phys. 48; 337-350 (2009). DOI: 10.1007/s10773-008-9806-y
[17] A. N. Ikot, O. A. Awoga and A. D. Antia. Chin. Phys. B Vol. 22 No 2 (2013) DOI: 10.1088/1674-1056/22/2/020304
[18] A. Arda, R Sever and C. Tezcan. Chinese J. Phys. 48, 27 (2010) arxiv; 0909.2086 (math-ph).
[19] A. Behzadi and S. M. Hajimirghasemi Science Journal (CSJ), Vol. 38, No2 (2017) http:/dx.doi.org/10.17776/cumuscij. 308364
[20] A. N. Ikot, C. N. Isonguyo, J. D. Olisa and H. P. Obong Atom Indonesia Vol. 40 No 3 149-155 (2014)