Search results for: complex shear modulus
1880 Computational Study of Blood Flow Analysis for Coronary Artery Disease
Authors: Radhe Tado, Ashish B. Deoghare, K. M. Pandey
Abstract:
The aim of this study is to estimate the effect of blood flow through the coronary artery in human heart so as to assess the coronary artery disease.Velocity, wall shear stress (WSS), strain rate and wall pressure distribution are some of the important hemodynamic parameters that are non-invasively assessed with computational fluid dynamics (CFD). These parameters are used to identify the mechanical factors responsible for the plaque progression and/or rupture in left coronary arteries (LCA) in coronary arteries.The initial step for CFD simulations was the construction of a geometrical model of the LCA. Patient specific artery model is constructed using computed tomography (CT) scan data with the help of MIMICS Research 19.0. For CFD analysis ANSYS FLUENT-14.5 is used.Hemodynamic parameters were quantified and flow patterns were visualized both in the absence and presence of coronary plaques. The wall pressure continuously decreased towards distal segments and showed pressure drops in stenotic segments. Areas of high WSS and high flow velocities were found adjacent to plaques deposition.
Keywords: Computational fluid dynamics, hemodynamics, velocity, strain rate, wall pressure, wall shear stress.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14771879 Harnessing Nigeria's Forestry Potential for Structural Applications: Structural Reliability of Nigerian Grown Opepe Timber
Authors: J. I. Aguwa, S. Sadiku, M. Abdullahi
Abstract:
This study examined the structural reliability of the Nigerian grown Opepe timber as bridge beam material. The strength of a particular specie of timber depends so much on some factors such as soil and environment in which it is grown. The steps involved are collection of the Opepe timber samples, seasoning/preparation of the test specimens, determination of the strength properties/statistical analysis, development of a computer programme in FORTRAN language and finally structural reliability analysis using FORM 5 software. The result revealed that the Nigerian grown Opepe is a reliable and durable structural bridge beam material for span of 5000mm, depth of 400mm, breadth of 250mm and end bearing length of 150mm. The probabilities of failure in bending parallel to the grain, compression perpendicular to the grain, shear parallel to the grain and deflection are 1.61 x 10-7, 1.43 x 10-8, 1.93 x 10-4 and 1.51 x 10-15 respectively. The paper recommends establishment of Opepe plantation in various Local Government Areas in Nigeria for structural applications such as in bridges, railway sleepers, generation of income to the nation as well as creating employment for the numerous unemployed youths.Keywords: Bending and deflection, Bridge beam, Compression, Nigerian Opepe, Shear, Structural reliability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12581878 Mixing Behaviors of Shear-Thinning Fluids in Serpentine-Channel Micromixers
Authors: Rei-Tang Tsai, Chih-Yang Wu, Chia-Yuan Chang, Ming-Ying Kuo
Abstract:
This study aims to investigate the mixing behaviors of deionized (DI) water and carboxymethyl cellulose (CMC) solutions in C-shaped serpentine micromixers over a wide range of flow conditions. The flow of CMC solutions exhibits shear-thinning behaviors. Numerical simulations are performed to investigate the effects of the mean flow speed, fluid properties and geometry parameters on flow and mixing in the micromixers with the serpentine channel of the same overall channel length. From the results, we can find the following trends. When convection dominates fluid mixing, the curvature-induced vortices enhance fluid mixing effectively. The mixing efficiency of a micromixer consisting of semicircular C-shaped repeating units with a smaller centerline radius is better than that of a micromixer consisting of major segment repeating units with a larger centerline radius. The viscosity of DI water is less than the overall average apparent viscosity of CMC solutions, and so the effect of curvature-induced vortices on fluid mixing in DI water is larger than that in CMC solutions for the cases with the same mean flow speed.Keywords: Microfluidics, mixing, non-Newtonian fluids, curved channel, vortex.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19361877 Absorbed Dose Estimation of 68Ga-EDTMP in Human Organs
Authors: S. Zolghadri, H. Yousefnia, A. R. Jalilian
Abstract:
Bone metastases are observed in a wide range of cancers leading to intolerable pain. While early detection can help the physicians in the decision of the type of treatment, various radiopharmaceuticals using phosphonates like 68Ga-EDTMP have been developed. In this work, due to the importance of absorbed dose, human absorbed dose of this new agent was calculated for the first time based on biodistribution data in Wild-type rats. 68Ga was obtained from 68Ge/68Ga generator with radionuclidic purity and radiochemical purity of higher than 99%. The radiolabeled complex was prepared in the optimized conditions. Radiochemical purity of the radiolabeled complex was checked by instant thin layer chromatography (ITLC) method using Whatman No. 2 paper and saline. The results indicated the radiochemical purity of higher than 99%. The radiolabelled complex was injected into the Wild-type rats and its biodistribution was studied up to 120 min. As expected, major accumulation was observed in the bone. Absorbed dose of each human organ was calculated based on biodistribution in the rats using RADAR method. Bone surface and bone marrow with 0.112 and 0.053 mSv/MBq, respectively, received the highest absorbed dose. According to these results, the radiolabeled complex is a suitable and safe option for PET bone imaging.
Keywords: Absorbed dose, EDTMP, 68Ga, rats.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6641876 Study on Optimization of Air Infiltration at Entrance of a Commercial Complex in Zhejiang Province
Authors: Yujie Zhao, Jiantao Weng
Abstract:
In the past decade, with the rapid development of China's economy, the purchasing power and physical demand of residents have been improved, which results in the vast emergence of public buildings like large shopping malls. However, the architects usually focus on the internal functions and streamlines of these buildings, ignoring the impact of the environment on the subjective feelings of building users. Only in Zhejiang province, the infiltration of cold air in winter frequently occurs at the entrance of sizeable commercial complex buildings that have been in operation, which will affect the environmental comfort of the building lobby and internal public spaces. At present, to reduce these adverse effects, it is usually adopted to add active equipment, such as setting air curtains to block air exchange or adding heating air conditioners. From the perspective of energy consumption, the infiltration of cold air into the entrance will increase the heat consumption of indoor heating equipment, which will indirectly cause considerable economic losses during the whole winter heating stage. Therefore, it is of considerable significance to explore the suitable entrance forms for improving the environmental comfort of commercial buildings and saving energy. In this paper, a commercial complex with apparent cold air infiltration problem in Hangzhou is selected as the research object to establish a model. The environmental parameters of the building entrance, including temperature, wind speed, and infiltration air volume, are obtained by Computational Fluid Dynamics (CFD) simulation, from which the heat consumption caused by the natural air infiltration in the winter and its potential economic loss is estimated as the objective metric. This study finally obtains the optimization direction of the building entrance form of the commercial complex by comparing the simulation results of other local commercial complex projects with different entrance forms. The conclusions will guide the entrance design of the same type of commercial complex in this area.
Keywords: Air infiltration, commercial complex, heat consumption, CFD simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7641875 Characterisation of Wind-Driven Ventilation in Complex Terrain Conditions
Authors: Daniel Micallef, Damien Bounaudet, Robert N. Farrugia, Simon P. Borg, Vincent Buhagiar, Tonio Sant
Abstract:
The physical effects of upstream flow obstructions such as vegetation on cross-ventilation phenomena of a building are important for issues such as indoor thermal comfort. Modelling such effects in Computational Fluid Dynamics simulations may also be challenging. The aim of this work is to establish the cross-ventilation jet behaviour in such complex terrain conditions as well as to provide guidelines on the implementation of CFD numerical simulations in order to model complex terrain features such as vegetation in an efficient manner. The methodology consists of onsite measurements on a test cell coupled with numerical simulations. It was found that the cross-ventilation flow is highly turbulent despite the very low velocities encountered internally within the test cells. While no direct measurement of the jet direction was made, the measurements indicate that flow tends to be reversed from the leeward to the windward side. Modelling such a phenomenon proves challenging and is strongly influenced by how vegetation is modelled. A solid vegetation tends to predict better the direction and magnitude of the flow than a porous vegetation approach. A simplified terrain model was also shown to provide good comparisons with observation. The findings have important implications on the study of cross-ventilation in complex terrain conditions since the flow direction does not remain trivial, as with the traditional isolated building case.Keywords: Complex terrain, cross-ventilation, wind driven ventilation, Computational Fluid Dynamics (CFD), wind resource.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8941874 Comparison of Rheological Properties for Polymer Modified Asphalt Produced in Riyadh
Authors: Ali M. Babalghaith, Hamad A. Alsoliman, Abdulrahman S. Al-Suhaibani
Abstract:
Flexible pavement made with neat asphalt binder is not enough to resist heavy traffic loads as well as harsh environmental condition found in Riyadh region. Therefore, there is a need to modify asphalt binder with polymers to satisfy such conditions. There are several types of polymers that are used to modify asphalt binder. The objective of this paper is to compare the rheological properties of six polymer modified asphalt binders (Lucolast7010, Anglomak2144, Paveflex140, SBS KTR401, EE-2 and Crumb rubber) obtained from asphalt manufacturer plants. The rheological properties of polymer modified asphalt binders were tested using conventional tests such as penetration, softening point and viscosity; and SHRP tests such as dynamic shear rheometer and bending beam rheometer. The results have indicated that the polymer modified asphalt binders have lower penetration and higher softening point than neat asphalt indicating an improvement in stiffness of asphalt binder, and as a result, more resistant to rutting. Moreover, the dynamic shear rheometer results have shown that all modifiers used in this study improved the binder properties and satisfied the Superpave specifications except SBS KTR401 which failed to satisfy the rutting parameter (G*/sinδ).Keywords: Polymer modified asphalt, rheological properties, SBS, crumb rubber, EE-2.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24081873 Estimated Human Absorbed Dose of 111In-BPAMD as a New Bone-Seeking SPECT-Imaging Agent
Authors: H. Yousefnia, S. Zolghadri
Abstract:
An early diagnosis of bone metastasis is very important for making a right decision on a subsequent therapy. One of the most important steps to be taken initially, for developing a new radiopharmaceutical is the measurement of organ radiation exposure dose. In this study, the dosimetric studies of a novel agent for SPECT-imaging of the bone metastasis, 111In-(4- {[(bis(phosphonomethyl))carbamoyl]methyl}7,10bis(carboxymethyl) -1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been carried out to estimate the dose in human organs based on the data derived from mice. The radiolabeled complex was prepared with high radiochemical purity in the optimal conditions. Biodistribution studies of the complex was investigated in the male Syrian mice at the selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was made based on data derived from the mice by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose with respect to the critical organs is satisfactory within the acceptable range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and it can be considered as a viable agent for SPECT-imaging of the bone metastasis in the near future.Keywords: In-111, BPAMD, absorbed dose, RADAR.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21981872 Repairing and Strengthening Earthquake Damaged RC Beams with Composites
Authors: H. Murat Tanarslan
Abstract:
The dominant judgment for earthquake damaged reinforced concrete (RC) structures is to rebuild them with the new ones. Consequently, this paper estimates if there is chance to repair earthquake RC beams and obtain economical contribution to modern day society. Therefore, the totally damaged (damaged in shear under cyclic load) reinforced concrete (RC) beams repaired and strengthened by externally bonded carbon fibre reinforced polymer (CFRP) strips in this study. Four specimens, apart from the reference beam, were separated into two distinct groups. Two experimental beams in the first group primarily tested up to failure then appropriately repaired and strengthened with CFRP strips. Two undamaged specimens from the second group were not repaired but strengthened by the identical strengthening scheme as the first group for comparison. This study studies whether earthquake damaged RC beams that have been repaired and strengthened will validate similar strength and behavior to equally strengthened, undamaged RC beams. Accordingly, a strength correspondence according to strengthened specimens was acquired for the repaired and strengthened specimens. Test results confirmed that repair and strengthening, which were estimated in the experimental program, were effective for the specimens with the cracking patterns considered in the experimental program.
Keywords: Shear Strengthening, Repairing, CFRP Strips.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991871 ROC Analysis of PVC Detection Algorithm using ECG and Vector-ECG Charateristics
Authors: J. S. Nah, A. Y. Jeon, J. H. Ro, G. R. Jeon
Abstract:
ECG analysis method was developed using ROC analysis of PVC detecting algorithm. ECG signal of MIT-BIH arrhythmia database was analyzed by MATLAB. First of all, the baseline was removed by median filter to preprocess the ECG signal. R peaks were detected for ECG analysis method, and normal VCG was extracted for VCG analysis method. Four PVC detecting algorithm was analyzed by ROC curve, which parameters are maximum amplitude of QRS complex, width of QRS complex, r-r interval and geometric mean of VCG. To set cut-off value of parameters, ROC curve was estimated by true-positive rate (sensitivity) and false-positive rate. sensitivity and false negative rate (specificity) of ROC curve calculated, and ECG was analyzed using cut-off value which was estimated from ROC curve. As a result, PVC detecting algorithm of VCG geometric mean have high availability, and PVC could be detected more accurately with amplitude and width of QRS complex.Keywords: Vectorcardiogram (VCG), Premature Ventricular contraction (PVC), ROC (receiver operating characteristic) curve, ECG
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29451870 Study on Buckling and Yielding Behaviors of Low Yield Point Steel Plates
Authors: David Boyajian, Tadeh Zirakian
Abstract:
Stability and performance of steel plates are characterized by geometrical buckling and material yielding. In this paper, the geometrical buckling and material yielding behaviors of low yield point (LYP) steel plates are studied from the point of view of their application in steel plate shear wall (SPSW) systems. Use of LYP steel facilitates the design and application of web plates with improved buckling and energy absorption capacities in SPSW systems. LYP steel infill plates may yield first and then undergo inelastic buckling. Hence, accurate determination of the limiting plate thickness corresponding to simultaneous buckling and yielding can be effective in seismic design of such lateral force-resisting and energy dissipating systems. The limiting thicknesses of plates with different loading and support conditions are determined theoretically and verified through detailed numerical simulations. Effects of use of LYP steel and plate aspect ratio parameter on the limiting plate thickness are investigated as well. In addition, detailed studies are performed on determination of the limiting web-plate thickness in code-designed SPSWs. Some practical recommendations are accordingly provided for efficient seismic design of SPSW systems with LYP steel infill plates.Keywords: Plates, buckling, yielding, low yield point steel, steel plate shear walls.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12061869 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles
Authors: Mirigul Altan, Huseyin Yildirim
Abstract:
Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38921868 Sustainable Upgrade of Existing Heritage Infrastructure: Strengthening and Rehabilitation of the LH Ford Bridge
Authors: Vince Scolaro, Lakshman Prasad, Ted Polley, Sanjivan Deshpande
Abstract:
The LH Ford Bridge, built in the 1960’s, comprises 28 spans, is 800 m long and crosses the Macquarie River at Dubbo, NSW. The main bridge spans comprise three spans with a 63 m centre span (25 m drop-in section) supported by halving joints from the main cantilevers and back spans of 28 m. The main bridge spans were built using complex construction staging (first of this type in NSW). They comprise twin precast boxes, in-situ reinforced concrete infills, and cantilevered outriggers stressed both longitudinally and transversely. Since construction, this bridge has undergone significantly increased design vehicle loads and showed signs of excessive shrinkage and creep leading to significant sagging of the centre span with evidence of previous failure and remediation of the halving joints. A comprehensive load rating assessment was undertaken taking account of the original complex construction staging. Deficiencies identified included, inadequate capacity of the halving joints, failure of the bearings at the halving joints, inadequate shear capacity of the girder webs and inadequate girder flexural capacity to carry B-Double design vehicles. A strengthening system comprising two new piers (under each of the halving joints), new bearings and installation of external prestressing to the soffit of both drop-in-span and back spans was adopted. A portion of dead load had to be transferred from the superstructure to the new piers via innovative soft/stiff bearing combinations to reduce new locked in stresses resulting from the new pier supports. Significant temporary works comprised a precast concrete shell beam forming the pile cap/pier structure, addition of temporary suspended scaffold (without overstressing the existing superstructure) and installation of jacking stays for new bearing top and bottom plates. This paper presents how this existing historic and socially important bridge was strengthened and updated to increase its design life without the need for replacement.
Keywords: Strengthening, creep, construction, box girder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 791867 A Numerical Study on the Seismic Performance of Built-Up Battened Columns
Authors: Sophia C. Alih, Mohammadreza Vafaei, Farnoud Rahimi Mansour, Nur Hajarul Falahi Abdul Halim
Abstract:
Built-up columns have been widely employed by practice engineers in the design and construction of buildings and bridges. However, failures have been observed in this type of columns in previous seismic events. This study analyses the performance of built-up columns with different configurations of battens when it is subjected to seismic loads. Four columns with different size of battens were simulated and subjected to three different intensities of axial load along with a lateral cyclic load. Results indicate that the size of battens influences significantly the seismic behavior of columns. Lower shear capacity of battens results in higher ultimate strength and ductility for built-up columns. It is observed that intensity of axial load has a significant effect on the ultimate strength of columns, but it is less influential on the yield strength. For a given drift value, the stress level in the centroid of smaller size battens is significantly more than that of larger size battens signifying damage concentration in battens rather than chords. It is concluded that design of battens for shear demand lower than code specified values only slightly reduces initial stiffness of columns; however, it improves seismic performance of battened columns.Keywords: Battened column, built-up column, cyclic behavior, seismic design, steel column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13031866 Assessing the Suitability of South African Waste Foundry Sand as an Additive in Clay Masonry Products
Authors: Nthabiseng Portia Mahumapelo, Andre van Niekerk, Ndabenhle Sosibo, Nirdesh Singh
Abstract:
The foundry industry generates large quantities of solid waste in the form of waste foundry sand. The ever-increasing quantities of this type of industrial waste put pressure on land-filling space and its proper management has become a global concern. The South African foundry industry is not different when it comes to this solid waste generation. Utilizing the foundry waste sand in other applications has become an attractive avenue to deal with this waste stream. In the present paper, an evaluation was done on the suitability of foundry waste sand as an additive in clay masonry products. Purchased clay was added to the foundry waste sand sample in a 50/50 ratio. The mixture was named FC sample. The FC sample was mixed with water in a pan mixer until the mixture was consistent and suitable for extrusion. The FC sample was extruded and cut into briquettes. Water absorption, shrinkage and modulus of rupture tests were conducted on the resultant briquettes. Foundry waste sand and FC samples were respectively characterized mineralogically using X-Ray Diffraction, and the major and trace elements were determined using Inductively Coupled Plasma Optical Emission Spectroscopy. Adding purchased clay to the foundry waste sand positively influenced the workability of the test sample. Another positive characteristic was the low linear shrinkage, which indicated that products manufactured from the FC sample would not be susceptible to cracking. The water absorption values were acceptable and the unfired and fired strength values of the briquette’s samples were acceptable. In conclusion, tests showed that foundry waste sand can be used as an additive in masonry clay bricks, provided it is blended with good quality clay.
Keywords: Foundry waste sand, masonry clay bricks, modulus of rupture, shrinkage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6601865 Elastic-Plastic Contact Analysis of Single Layer Solid Rough Surface Model using FEM
Authors: A. Megalingam, M.M.Mayuram
Abstract:
Evaluation of contact pressure, surface and subsurface contact stresses are essential to know the functional response of surface coatings and the contact behavior mainly depends on surface roughness, material property, thickness of layer and the manner of loading. Contact parameter evaluation of real rough surface contacts mostly relies on statistical single asperity contact approaches. In this work, a three dimensional layered solid rough surface in contact with a rigid flat is modeled and analyzed using finite element method. The rough surface of layered solid is generated by FFT approach. The generated rough surface is exported to a finite element method based ANSYS package through which the bottom up solid modeling is employed to create a deformable solid model with a layered solid rough surface on top. The discretization and contact analysis are carried by using the same ANSYS package. The elastic, elastoplastic and plastic deformations are continuous in the present finite element method unlike many other contact models. The Young-s modulus to yield strength ratio of layer is varied in the present work to observe the contact parameters effect while keeping the surface roughness and substrate material properties as constant. The contacting asperities attain elastic, elastoplastic and plastic states with their continuity and asperity interaction phenomena is inherently included. The resultant contact parameters show that neighboring asperity interaction and the Young-s modulus to yield strength ratio of layer influence the bulk deformation consequently affect the interface strength.Keywords: Asperity interaction, finite element method, rough surface contact, single layered solid
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27351864 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions
Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani
Abstract:
Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11851863 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.
Keywords: Biocomposite, epoxy resin, mussel shell, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29331862 Analyzing the Historical Ayazma Bath within the Scope of Integrated Preservation and Specifying the Criteria for Reuse
Authors: Meryem Elif Çelebi Yakartepe, Ayşe Betül Gökarslan
Abstract:
Today, preservation of the historical constructions in "single construction" scale creates an inadequate preservation model in terms of the integrity of the historical environment in which they are located. However, in order to preserve these structures forming this integrity with a holistic approach, the structures either need to continue their unique functions or to be reshaped for function conforming to today's comfort conditions brought by the modern life.
In this work, the preservation of Ayazma Social Complex located in Ayazma Neighborhood of Üsküdar, one of the most important historical districts of İstanbul, with integrated preservation method has been discussed. In the conventional Turkish architecture, the social complex is a structure complex formed via constructing the public buildings required for the daily life of the people living in a settlement. Thus, the preservation of the social complexes within the scope of "integrated preservation" has gained importance. Ayazma Social Complex that forms the examination area of this work consists of a mosque in its center and structures around this mosque such as sultan mansion, time assignment center, primary school, stores, bath and water reservoirs. Mosque, sultan mansion and the water reservoirs survived to today as mostly preserved status. However, time assignment center, primary school and the stores didn't survive to today and new structures were built on their plots. The bath was mostly damaged and only the wall residues survive to today. Thus, it's urgent and crucial especially carry out the preservation restoration of the bath in accordance with integrated preservation principles. The preservation problems of the bath based on the social complex were determined as a working method and preservation suggestions were made to overcome these problems and to include the bath into daily life. Furthermore, it was suggested that the bath should be reshaped for a different function in order to be preserved with the social complex.
Keywords: Üsküdar, Ayazma Complex, Ayazma Bath, Conservation, Restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18201861 Identification of LTI Autonomous All Pole System Using Eigenvector Algorithm
Authors: Sudipta Majumdar
Abstract:
This paper presents a method for identification of a linear time invariant (LTI) autonomous all pole system using singular value decomposition. The novelty of this paper is two fold: First, MUSIC algorithm for estimating complex frequencies from real measurements is proposed. Secondly, using the proposed algorithm, we can identify the coefficients of differential equation that determines the LTI system by switching off our input signal. For this purpose, we need only to switch off the input, apply our complex MUSIC algorithm and determine the coefficients as symmetric polynomials in the complex frequencies. This method can be applied to unstable system and has higher resolution as compared to time series solution when, noisy data are used. The classical performance bound, Cramer Rao bound (CRB), has been used as a basis for performance comparison of the proposed method for multiple poles estimation in noisy exponential signal.Keywords: MUSIC algorithm, Cramer Rao bound, frequency estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9341860 Variation of Streamwise and Vertical Turbulence Intensity in a Smooth and Rough Bed Open Channel Flow
Authors: Md Abdullah Al Faruque, Ram Balachandar
Abstract:
An experimental study with four different types of bed conditions was carried out to understand the effect of roughness in open channel flow at two different Reynolds numbers. The bed conditions include a smooth surface and three different roughness conditions, which were generated using sand grains with a median diameter of 2.46 mm. The three rough conditions include a surface with distributed roughness, a surface with continuously distributed roughness and a sand bed with a permeable interface. A commercial two-component fibre-optic LDA system was used to conduct the velocity measurements. The variables of interest include the mean velocity, turbulence intensity, correlation between the streamwise and the wall normal turbulence, Reynolds shear stress and velocity triple products. Quadrant decomposition was used to extract the magnitude of the Reynolds shear stress of the turbulent bursting events. The effect of roughness was evident throughout the flow depth. The results show that distributed roughness has the greatest roughness effect followed by the sand bed and the continuous roughness. Compared to the smooth bed, the streamwise turbulence intensity reduces but the vertical turbulence intensity increases at a location very close to the bed due to the introduction of roughness. Although the same sand grain is used to create the three different rough bed conditions, the difference in the turbulence intensity is an indication that the specific geometry of the roughness has an influence on turbulence structure.Keywords: Open channel flow, smooth bed, rough bed, Reynolds number, turbulence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22441859 Investigating the Effect of Uncertainty on a LP Model of a Petrochemical Complex: Stability Analysis Approach
Authors: Abdallah Al-Shammari
Abstract:
This study discusses the effect of uncertainty on production levels of a petrochemical complex. Uncertainly or variations in some model parameters, such as prices, supply and demand of materials, can affect the optimality or the efficiency of any chemical process. For any petrochemical complex with many plants, there are many sources of uncertainty and frequent variations which require more attention. Many optimization approaches are proposed in the literature to incorporate uncertainty within the model in order to obtain a robust solution. In this work, a stability analysis approach is applied to a deterministic LP model of a petrochemical complex consists of ten plants to investigate the effect of such variations on the obtained optimal production levels. The proposed approach can determinate the allowable variation ranges of some parameters, mainly objective or RHS coefficients, before the system lose its optimality. Parameters with relatively narrow range of variations, i.e. stability limits, are classified as sensitive parameters or constraints that need accurate estimate or intensive monitoring. These stability limits offer easy-to-use information to the decision maker and help in understanding the interaction between some model parameters and deciding when the system need to be re-optimize. The study shows that maximum production of ethylene and the prices of intermediate products are the most sensitive factors that affect the stability of the optimum solutionKeywords: Linear programming, Petrochemicals, stability analysis, uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19531858 Ground Response Analyses in Budapest Based on Site Investigations and Laboratory Measurements
Authors: Zsolt Szilvágyi, Jakub Panuska, Orsolya Kegyes-Brassai, Ákos Wolf, Péter Tildy, Richard P. Ray
Abstract:
Near-surface loose sediments and local ground conditions in general have a major influence on seismic response of structures. It is a difficult task to model ground behavior in seismic soil-structure-foundation interaction problems, fully account for them in seismic design of structures, or even properly consider them in seismic hazard assessment. In this study, we focused on applying seismic soil investigation methods, used for determining soil stiffness and damping properties, to response analysis used in seismic design. A site in Budapest, Hungary was investigated using Multichannel Analysis of Surface Waves, Seismic Cone Penetration Tests, Bender Elements, Resonant Column and Torsional Shear tests. Our aim was to compare the results of the different test methods and use the resulting soil properties for 1D ground response analysis. Often in practice, there are little-to no data available on dynamic soil properties and estimated parameters are used for design. Therefore, a comparison is made between results based on estimated parameters and those based on detailed investigations. Ground response results are also compared to Eurocode 8 design spectra.
Keywords: Bender element, ground response analysis, MASW, resonant column test, SCPT, torsional shear test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11241857 Application of Various Methods for Evaluation of Heavy Metal Pollution in Soils around Agarak Copper-Molybdenum Mine Complex, Armenia
Authors: K. A. Ghazaryan, H. S. Movsesyan, N. P. Ghazaryan
Abstract:
The present study was aimed in assessing the heavy metal pollution of the soils around Agarak copper-molybdenum mine complex and related environmental risks. This mine complex is located in the south-east part of Armenia, and the present study was conducted in 2013. The soils of the five riskiest sites of this region were studied: surroundings of the open mine, the sites adjacent to processing plant of Agarak copper-molybdenum mine complex, surroundings of Darazam active tailing dump, the recultivated tailing dump of “ravine - 2”, and the recultivated tailing dump of “ravine - 3”. The mountain cambisol was the main soil type in the study sites. The level of soil contamination by heavy metals was assessed by Contamination factors (Cf), Degree of contamination (Cd), Geoaccumulation index (I-geo) and Enrichment factor (EF). The distribution pattern of trace metals in the soil profile according to Cf, Cd, I-geo and EF values shows that the soil is much polluted. Almost in all studied sites, Cu, Mo, Pb, and Cd were the main polluting heavy metals, and this was conditioned by Agarak copper-molybdenum mine complex activity. It is necessary to state that the pollution problem becomes pressing as some parts of these highly polluted region are inhabited by population, and agriculture is highly developed there; therefore, heavy metals can be transferred into human bodies through food chains and have direct influence on public health. Since the induced pollution can pose serious threats to public health, further investigations on soil and vegetation pollution are recommended. Finally, Cf calculating based on distance from the pollution source and the wind direction can provide more reasonable results.
Keywords: Agarak copper-molybdenum mine complex, heavy metals, soil contamination, enrichment factor, Armenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12491856 Shear Layer Investigation through a High-Load Cascade in Low-Pressure Gas Turbine Conditions
Authors: Mehdi Habibnia Rami, Shidvash Vakilipour, Mohammad H. Sabour, Rouzbeh Riazi, Hossein Hassannia
Abstract:
This paper deals with the steady and unsteady flow behavior on the separation bubble occurring on the rear portion of the suction side of T106A blade. The first phase was to implement the steady condition capturing the separation bubble. To accurately predict the separated region, the effects of three different turbulence models and computational grids were separately investigated. The results of Large Eddy Simulation (LES) model on the finest grid structure are acceptably in a good agreement with its relevant experimental results. The second phase is mainly to address the effects of wake entrance on bubble disappearance in unsteady situation. In the current simulations, from what was suggested in an experiment, simulating the flow unsteadiness, with concentrations on small scale disturbances instead of simulating a complete oncoming wake, is the key issue. Subsequently, the results from the current strategy to apply the effects of the wake and two other experimental work were compared to be in a good agreement. Between the two experiments, one of them deals with wake passing unsteady flow, and the other one implements experimentally the same approach as the current Computational Fluid Dynamics (CFD) simulation.
Keywords: T106A turbine cascade, shear-layer separation, steady and unsteady conditions, turbulence models, OpenFOAM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7361855 FEM Models of Glued Laminated Timber Beams Enhanced by Bayesian Updating of Elastic Moduli
Authors: L. Melzerová, T. Janda, M. Šejnoha, J. Šejnoha
Abstract:
Two finite element (FEM) models are presented in this paper to address the random nature of the response of glued timber structures made of wood segments with variable elastic moduli evaluated from 3600 indentation measurements. This total database served to create the same number of ensembles as was the number of segments in the tested beam. Statistics of these ensembles were then assigned to given segments of beams and the Latin Hypercube Sampling (LHS) method was called to perform 100 simulations resulting into the ensemble of 100 deflections subjected to statistical evaluation. Here, a detailed geometrical arrangement of individual segments in the laminated beam was considered in the construction of two-dimensional FEM model subjected to in fourpoint bending to comply with the laboratory tests. Since laboratory measurements of local elastic moduli may in general suffer from a significant experimental error, it appears advantageous to exploit the full scale measurements of timber beams, i.e. deflections, to improve their prior distributions with the help of the Bayesian statistical method. This, however, requires an efficient computational model when simulating the laboratory tests numerically. To this end, a simplified model based on Mindlin’s beam theory was established. The improved posterior distributions show that the most significant change of the Young’s modulus distribution takes place in laminae in the most strained zones, i.e. in the top and bottom layers within the beam center region. Posterior distributions of moduli of elasticity were subsequently utilized in the 2D FEM model and compared with the original simulations.
Keywords: Bayesian inference, FEM, four point bending test, laminated timber, parameter estimation, prior and posterior distribution, Young’s modulus.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22171854 Design of Seismically Resistant Tree-Branching Steel Frames Using Theory and Design Guides for Eccentrically Braced Frames
Authors: R. Gary Black, Abolhassan Astaneh-Asl
Abstract:
The International Building Code (IBC) and the California Building Code (CBC) both recognize four basic types of steel seismic resistant frames; moment frames, concentrically braced frames, shear walls and eccentrically braced frames. Based on specified geometries and detailing, the seismic performance of these steel frames is well understood. In 2011, the authors designed an innovative steel braced frame system with tapering members in the general shape of a branching tree as a seismic retrofit solution to an existing four story “lift-slab” building. Located in the seismically active San Francisco Bay Area of California, a frame of this configuration, not covered by the governing codes, would typically require model or full scale testing to obtain jurisdiction approval. This paper describes how the theories, protocols, and code requirements of eccentrically braced frames (EBFs) were employed to satisfy the 2009 International Building Code (IBC) and the 2010 California Building Code (CBC) for seismically resistant steel frames and permit construction of these nonconforming geometries.
Keywords: Eccentrically Braced Frame, Lift Slab Construction, Seismic Retrofit, Shear Link, Steel Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25971853 The Effects of Various Boundary Conditions on Thermal Buckling of Functionally Graded Beamwith Piezoelectric Layers Based on Third order Shear Deformation Theory
Authors: O. Miraliyari
Abstract:
This article attempts to analyze functionally graded beam thermal buckling along with piezoelectric layers applying based on the third order shearing deformation theory considering various boundary conditions. The beam properties are assumed to vary continuously from the lower surface to the upper surface of the beam. The equilibrium equations are derived using the total potential energy equations, Euler equations, piezoelectric material constitutive equations and third order shear deformation theory assumptions. In order to fulfill such an aim, at first functionally graded beam with piezoelectric layers applying the third order shearing deformation theory along with clamped -clamped boundary conditions are thoroughly analyzed, and then following making sure of the correctness of all the equations, the very same beam is analyzed with piezoelectric layers through simply-simply and simply-clamped boundary conditions. In this article buckling critical temperature for functionally graded beam is derived in two different ways, without piezoelectric layer and with piezoelectric layer and the results are compared together. Finally, all the conclusions obtained will be compared and contrasted with the same samples in the same and distinguished conditions through tables and charts. It would be noteworthy that in this article, the software MAPLE has been applied in order to do the numeral calculations.
Keywords: Thermal buckling, functionally graded beam, piezoelectric layer, various boundary conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16011852 Vincristine-Dextran Complex Loaded Solid Lipid Nanoparticles for Drug Delivery to the Brain
Authors: E. Aboutaleb, R. Dinarvand
Abstract:
The purpose of this work was to inspect the potential of vincristine-dextran complex loaded solid lipid nanoparticles for drug delivery to the brain. The nanoparticles were stained with a fluorescence dye and their plasma pharmacokinetic and brain concentrations were investigated following injection to rats. The result revealed a significant improvement in the plasma concentration profile of the SLN injected animals as well as a sharp increased concentration in the brains.Keywords: Brain, Coumarin-6, Nanoparticles, SLN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23611851 Statistical Analysis of Parameters Effects on Maximum Strain and Torsion Angle of FRP Honeycomb Sandwich Panels Subjected to Torsion
Authors: Mehdi Modabberifar, Milad Roodi, Ehsan Souri
Abstract:
In recent years, honeycomb fiber reinforced plastic (FRP) sandwich panels have been increasingly used in various industries. Low weight, low price and high mechanical strength are the benefits of these structures. However, their mechanical properties and behavior have not been fully explored. The objective of this study is to conduct a combined numerical-statistical investigation of honeycomb FRP sandwich beams subject to torsion load. In this paper, the effect of geometric parameters of sandwich panel on maximum shear strain in both face and core and angle of torsion in a honeycomb FRP sandwich structures in torsion is investigated. The effect of Parameters including core thickness, face skin thickness, cell shape, cell size, and cell thickness on mechanical behavior of the structure were numerically investigated. Main effects of factors were considered in this paper and regression equations were derived. Taguchi method was employed as experimental design and an optimum parameter combination for the maximum structure stiffness has been obtained. The results showed that cell size and face skin thickness have the most significant impacts on torsion angle, maximum shear strain in face and core.Keywords: Finite element, honeycomb FRP sandwich panel, torsion, civil engineering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2619