Search results for: Shear strength
1269 Mechanical Behavior of Recycled Pet Fiber Reinforced Concrete Matrix
Authors: Comingstarful Marthong, Deba Kumar Sarma
Abstract:
Concrete is strong in compression however weak in tension. The tensile strength as well as ductile property of concrete could be improved by addition of short dispersed fibers. Polyethylene terephthalate (PET) fiber obtained from hand cutting or mechanical slitting of plastic sheets generally used as discrete reinforcement in substitution of steel fiber. PET fiber obtained from the former process is in the form of straight slit sheet pattern that impart weaker mechanical bonding behavior in the concrete matrix. To improve the limitation of straight slit sheet fiber the present study considered two additional geometry of fiber namely (a) flattened end slit sheet and (b) deformed slit sheet. The mix for plain concrete was design for a compressive strength of 25 MPa at 28 days curing time with a watercement ratio of 0.5. Cylindrical and beam specimens with 0.5% fibers volume fraction and without fibers were cast to investigate the influence of geometry on the mechanical properties of concrete. The performance parameters mainly studied include flexural strength, splitting tensile strength, compressive strength and ultrasonic pulse velocity (UPV). Test results show that geometry of fiber has a marginal effect on the workability of concrete. However, it plays a significant role in achieving a good compressive and tensile strength of concrete. Further, significant improvement in term of flexural and energy dissipation capacity were observed from other fibers as compared to the straight slit sheet pattern. Also, the inclusion of PET fiber improved the ability in absorbing energy in the post-cracking state of the specimen as well as no significant porous structures.Keywords: Concrete matrix, polyethylene terephthalate (PET) fibers, mechanical bonding, mechanical properties, UPV.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20541268 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete
Authors: H. A. Alguhi, W. A. Elsaigh
Abstract:
This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyses involving HSFRC structures.Keywords: Tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21701267 Physical and Thermo-Physical Properties of High Strength Concrete Containing Raw Rice Husk after High Temperature Effect
Authors: B. Akturk, N. Yuzer, N. Kabay
Abstract:
High temperature is one of the most detrimental effects that cause important changes in concrete’s mechanical, physical, and thermo-physical properties. As a result of these changes, especially high strength concrete (HSC), may exhibit damages such as cracks and spallings. To overcome this problem, incorporating polymer fibers such as polypropylene (PP) in concrete is a very well-known method. In this study, using RRH, as a sustainable material, instead of PP fiber in HSC to prevent spallings and improve physical and thermo-physical properties were investigated. Therefore, seven HSC mixtures with 0.25 water to binder ratio were prepared incorporating silica fume and blast furnace slag. PP and RRH were used at 0.2-0.5% and 0.5-3% by weight of cement, respectively. All specimens were subjected to high temperatures (20 (control), 300, 600 and 900˚C) with a heating rate of 2.5˚C/min and after cooling, residual physical and thermo-physical properties were determined.
Keywords: High temperature, high strength concrete, polypropylene fiber, raw rice husk, thermo-physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21671266 Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting
Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov
Abstract:
In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.
Keywords: Additive manufacturing, aluminium alloy, melting pools, tensile test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6981265 Nonlinear Finite Element Analysis of Composite Cantilever Beam with External Prestressing
Authors: R. I. Liban, N. Tayşi
Abstract:
This paper deals with a nonlinear finite element analysis to examine the behavior up to failure of cantilever composite steel-concrete beams which are prestressed externally. 'Pre-' means stressing the high strength external tendons in the steel beam section before the concrete slab is added. The composite beam contains a concrete slab which is connected together with steel I-beam by means of perfect shear connectors between the concrete slab and the steel beam which is subjected to static loading. A finite element analysis will be done to study the effects of external prestressed tendons on the composite steel-concrete beams by locating the tendons in different locations (profiles). ANSYS version 12.1 computer program is being used to analyze the represented three-dimensional model of the cantilever composite beam. This model gives all these outputs, mainly load-displacement behavior of the cantilever end and in the middle span of the simple support part.
Keywords: Composite steel-concrete beams, external prestressing, finite element analysis, ANSYS.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14161264 The Effects of Electrical Muscle Stimulation (EMS) towards Male Skeletal Muscle Mass
Authors: Mohd Faridz Ahmad, Amirul Hakim Hasbullah
Abstract:
Electrical Muscle Stimulation (EMS) has been introduced and globally gained increasing attention on its usefulness. Continuous application of EMS may lead to the increment of muscle mass and indirectly will increase the strength. This study can be used as an alternative to help people especially those living a sedentary lifestyle to improve their muscle activity without having to go through a heavy workout session. Therefore, this study intended to investigate the effectiveness of EMS training program in 5 weeks interventions towards male body composition. It was a quasiexperimental design, held at the Impulse Studio Bangsar, which examined the effects of EMS training towards skeletal muscle mass among the subjects. Fifteen subjects (n = 15) were selected to assist in this study. The demographic data showed that, the average age of the subjects was 43.07 years old ± 9.90, height (173.4 cm ± 9.09) and weight was (85.79 kg ± 18.07). Results showed that there was a significant difference on the skeletal muscle mass (p = 0.01 < 0.05), upper body (p = 0.01 < 0.05) and lower body (p = 0.00 < 0.05). Therefore, the null hypothesis has been rejected in this study. As a conclusion, the application of EMS towards body composition can increase the muscle size and strength. This method has been proven to be able to improve athlete strength and thus, may be implemented in the sports science area of knowledge.
Keywords: Body composition, EMS, skeletal muscle mass, strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 63721263 Rheological Behaviors of Crude Oil in the Presence of Water
Authors: Madjid Meriem-Benziane, Hamou Zahloul
Abstract:
The rheological properties of light crude oil and its mixture with water were investigated experimentally. These rheological properties include steady flow behavior, yield stress, transient flow behavior, and viscoelastic behavior. A RheoStress RS600 rheometer was employed in all of the rheological examination tests. The light crude oil exhibits a Newtonian and for emulsion exhibits a non-Newtonian shear thinning behavior over the examined shear rate range of 0.1–120 s-1. In first time, a series of samples of crude oil from the Algerian Sahara has been tested and the results expressed in terms of τ=f(γ) have demonstrated their Newtonian character for the temperature included in [20°C, 70°C]. In second time and at T=20°C, the oil-water emulsions (30%, 50% and 70%) by volume of water), thermodynamically stable, have demonstrated a non-Newtonian rheological behavior that is to say, Herschel-Bulkley and Bingham types. For each type of crude oil-water emulsion, the rheological parameters are calculated by numerical treatment of results.
Keywords: Crude oil Algerian, Emulsion, Newtonian, Non- Newtonian, viscosity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34191262 Prediction of Compressive Strength of Concrete from Early Age Test Result Using Design of Experiments (RSM)
Authors: Salem Alsanusi, Loubna Bentaher
Abstract:
Response Surface Methods (RSM) provide statistically validated predictive models that can then be manipulated for finding optimal process configurations. Variation transmitted to responses from poorly controlled process factors can be accounted for by the mathematical technique of propagation of error (POE), which facilitates ‘finding the flats’ on the surfaces generated by RSM. The dual response approach to RSM captures the standard deviation of the output as well as the average. It accounts for unknown sources of variation. Dual response plus propagation of error (POE) provides a more useful model of overall response variation. In our case, we implemented this technique in predicting compressive strength of concrete of 28 days in age. Since 28 days is quite time consuming, while it is important to ensure the quality control process. This paper investigates the potential of using design of experiments (DOE-RSM) to predict the compressive strength of concrete at 28th day. Data used for this study was carried out from experiment schemes at university of Benghazi, civil engineering department. A total of 114 sets of data were implemented. ACI mix design method was utilized for the mix design. No admixtures were used, only the main concrete mix constituents such as cement, coarseaggregate, fine aggregate and water were utilized in all mixes. Different mix proportions of the ingredients and different water cement ratio were used. The proposed mathematical models are capable of predicting the required concrete compressive strength of concrete from early ages.Keywords: Mix proportioning, response surface methodology, compressive strength, optimal design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22161261 Effect of Waste Bottle Chips on Strength Parameters of Silty Soil
Authors: Seyed Abolhasan Naeini, Hamidreza Rahmani
Abstract:
Laboratory consolidated undrained triaxial (CU) tests were carried out to study the strength behavior of silty soil reinforced with randomly plastic waste bottle chips. Specimens mixed with plastic waste chips in triaxial compression tests with 0.25, 0.50, 0.75, 1.0, and 1.25% by dry weight of soil and tree different length including 4, 8, and 12 mm. In all of the samples, the width and thickness of plastic chips were kept constant. According to the results, the amount and size of plastic waste bottle chips played an important role in the increasing of the strength parameters of reinforced silt compared to the pure soil. Because of good results, the suggested method of soil improvement can be used in many engineering problems such as increasing the bearing capacity and settlement reduction in foundations.
Keywords: Soil improvement, waste bottle chips, reinforcement, silt, Triaxial test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19711260 Re-Use of Waste Marble in Producing Green Concrete
Authors: Hasan Şahan Arel
Abstract:
In this study, literature related to the replacement of cement with waste marble and the use of waste marble as an aggregate in concrete production was examined. Workability of the concrete decreased when marble powder was used as a substitute for fine aggregate. Marble powder contributed to the compressive strength of concrete because of the CaCO3 and SiO2 present in the chemical structure of the marble. Additionally, the use of marble pieces in place of coarse aggregate revealed that this contributed to the workability and mechanical properties of the concrete. When natural standard sand was replaced with marble dust at a ratio of 15% and 75%, the compressive strength and splitting tensile strength of the concrete increased by 20%-26% and 10%-15%, respectively. However, coarse marble aggregates exhibited the best performance at a 100% replacement ratio. Additionally, there was a greater improvement in the mechanical properties of concrete when waste marble was used in a coarse aggregate form when compared to that of when marble was used in a dust form. If the cement was replaced with marble powder in proportions of 20% or more, then adverse effects were observed on the compressive strength and workability of the concrete. This study indicated that marble dust at a cement-replacement ratio of 5%-10% affected the mechanical properties of concrete by decreasing the global annual CO2 emissions by 12% and also lowering the costs from US$40/m3 to US$33/m3.
Keywords: Cement production, concrete, CO2 emission, marble, mechanical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22291259 Effects of Slip Condition and Peripheral Layer on Couple Stress Fluid Flow through a Channel with Mild Stenosis
Authors: Gurju Awgichew, G. Radhakrishnamacharya
Abstract:
Steady incompressible couple stress fluid flow through two dimensional symmetric channel with stenosis is investigated. The flow consisting of a core region to be a couple stress fluid and a peripheral layer of plasma (Newtonian fluid). Assuming the stenosis to be mild, the equations governing the flow of the proposed model are solved using the slip boundary condition and closed form expressions for the flow characteristics (the dimensionless resistance to flow and wall shear stress at the maximum height of stenosis) are derived. The effects of various parameters on these flow variables have been studied. It is observed that the resistance to flow as well as the wall shear stress increase with the height of stenosis, viscosity ratio and Darcy number. However, the trend is reversed as the slip and the couple stress parameter increase.
Keywords: Stenosis, Couple stress fluid, Slip condition, Peripheral layer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23491258 Tensile Properties of Aluminum Silicon Nickel Iron Vanadium High Entropy Alloys
Authors: Sefiu A. Bello, Nasirudeen K. Raji, Jeleel A. Adebisi, Sadiq A. Raji
Abstract:
Pure metals are not used in most cases for structural applications because of their limited properties. Presently, high entropy alloys (HEAs) are emerging by mixing comparative proportions of metals with the aim of maximizing the entropy leading to enhancement in structural and mechanical properties. Aluminum Silicon Nickel Iron Vanadium (AlSiNiFeV) alloy was developed using stir cast technique and analysed. Results obtained show that the alloy grade G0 contains 44 percentage by weight (wt%) Al, 32 wt% Si, 9 wt% Ni, 4 wt% Fe, 3 wt% V and 8 wt% for minor elements with tensile strength and elongation of 106 Nmm-2 and 2.68%, respectively. X-ray diffraction confirmed intermetallic compounds having hexagonal closed packed (HCP), orthorhombic and cubic structures in cubic dendritic matrix. This affirmed transformation from the cubic structures of elemental constituents of the HEAs to the precipitated structures of the intermetallic compounds. A maximum tensile strength of 188 Nmm-2 with 4% elongation was noticed at 10wt% of silica addition to the G0. An increase in tensile strength with an increment in silica content could be attributed to different phases and crystal geometries characterizing each HEA.
Keywords: High entropy alloys, phases, model, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7461257 Finite Element Assessment on Bond Behavior of FRP-to-Concrete Joints under Cyclic Loading
Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi
Abstract:
Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency, and stiffness on the fatigue life of the FRP-toconcrete joints.Keywords: FRP, concrete bond, control, fatigue, finite element model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18991256 Inelastic Strength of Laterally Unsupported Top- Loaded Built-Up Slender Beams
Authors: M. Massoud El Sa'adawy, F. F. F. El Dib
Abstract:
Lateral-torsional buckling (LTB) is one of the phenomenae controlling the ultimate bending strength of steel Ibeams carrying distributed loads on top flange. Built-up I-sections are used as main beams and distributors. This study investigates the ultimate bending strength of such beams with sections of different classes including slender elements. The nominal strengths of the selected beams are calculated for different unsupported lengths according to the Provisions of the American Institute of Steel Constructions (AISC-LRFD). These calculations are compared with results of a nonlinear inelastic study using accurate FE model for this type of loading. The goal is to investigate the performance of the provisions for the selected sections. Continuous distributed load at the top flange of the beams was applied at the FE model. Imperfections of different values are implemented to the FE model to examine their effect on the LTB of beams at failure, and hence, their effect on the ultimate strength of beams. The study also introduces a procedure for evaluating the performance of the provisions compared with the accurate FEA results of the selected sections. A simplified design procedure is given and recommendations for future code updates are made.Keywords: Lateral buckling, Top Loading, Ultimate load, Slender Sections.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26991255 Perturbations of the EM-field Meters Reading Caused by Flat Roof Security Wall
Authors: Alfonso Bahillo, Juan Blas, Santiago Mazuelas, Patricia Fernanadez, Ruben Mateo Lorenzo, Evaristo Jose Abril
Abstract:
The wide increase and diffusion on telecommunication technologies have caused a huge spread of electromagnetic sources in most European Countries. Since the public is continuously being exposed to electromagnetic radiation the possible health effects have become the focus of population concerns. As a result, electromagnetic field monitoring stations which control field strength in commercial frequency bands are being placed on the flat roof of many buildings. However there is no guidance on where to place them. This paper presents an analysis of frequency, polarization and angles of incidence of a plane wave which impinges on a flat roof security wall and its dependence on electromagnetic field strength meters placement.Keywords: EM field exposition, EM field strength meter, FDTD method, flat roof security wall, plane wave propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13151254 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste
Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh
Abstract:
The outstanding mechanical properties of Carbon nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of multiwalled carbon nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28 and 35days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.
Keywords: Carbon Nanotubes, Portland Cement, Composite, Compressive Strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31351253 Vibration of Functionally Graded Cylindrical Shells under Free-Free Boundary Conditions
Authors: A.R.Tahmasebi Birgani, M.Hosseinjani Zamenjani, M.R.Isvandzibaei
Abstract:
In the present work, study of the vibration of thin cylindrical shells made of a functionally gradient material (FGM) composed of stainless steel and nickel is presented. Material properties are graded in the thickness direction of the shell according to volume fraction power law distribution. The objective is to study the natural frequencies, the influence of constituent volume fractions and the effects of boundary conditions on the natural frequencies of the FG cylindrical shell. The study is carried out using third order shear deformation shell theory. The governing equations of motion of FG cylindrical shells are derived based on shear deformation theory. Results are presented on the frequency characteristics, influence of constituent volume fractions and the effects of free-free boundary conditions.
Keywords: Vibration, FGM, Cylindrical shell.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16331252 Thermo-mechanical Deformation Behavior of Functionally Graded Rectangular Plates Subjected to Various Boundary Conditions and Loadings
Authors: Mohammad Talha, B. N. Singh
Abstract:
This paper deals with the thermo-mechanical deformation behavior of shear deformable functionally graded ceramicmetal (FGM) plates. Theoretical formulations are based on higher order shear deformation theory with a considerable amendment in the transverse displacement using finite element method (FEM). The mechanical properties of the plate are assumed to be temperaturedependent and graded in the thickness direction according to a powerlaw distribution in terms of the volume fractions of the constituents. The temperature field is supposed to be a uniform distribution over the plate surface (XY plane) and varied in the thickness direction only. The fundamental equations for the FGM plates are obtained using variational approach by considering traction free boundary conditions on the top and bottom faces of the plate. A C0 continuous isoparametric Lagrangian finite element with thirteen degrees of freedom per node have been employed to accomplish the results. Convergence and comparison studies have been performed to demonstrate the efficiency of the present model. The numerical results are obtained for different thickness ratios, aspect ratios, volume fraction index and temperature rise with different loading and boundary conditions. Numerical results for the FGM plates are provided in dimensionless tabular and graphical forms. The results proclaim that the temperature field and the gradient in the material properties have significant role on the thermo-mechanical deformation behavior of the FGM plates.
Keywords: Functionally graded material, higher order shear deformation theory, finite element method, independent field variables.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23341251 Experimental Studies on Treated Sub-base Soil with Fly Ash and Cement for Sustainable Design Recommendations
Authors: M. Jayakumar, Lau Chee Sing
Abstract:
The pavement constructions on soft and expansive soils are not durable and unable to sustain heavy traffic loading. As a result, pavement failures and settlement problems will occur very often even under light traffic loading due to cyclic and rolling effects. Geotechnical engineers have dwelled deeply into this matter, and adopt various methods to improve the engineering characteristics of soft fine-grained soils and expansive soils. The problematic soils are either replaced by good and better quality material or treated by using chemical stabilization with various binding materials. Increased the strength and durability are also the part of the sustainability drive to reduce the environment footprint of the built environment by the efficient use of resources and waste recycle materials. This paper presents a series of laboratory tests and evaluates the effect of cement and fly ash on the strength and drainage characteristics of soil in Miri. The tests were performed at different percentages of cement and fly ash by dry weight of soil. Additional tests were also performed on soils treated with the combinations of fly ash with cement and lime. The results of this study indicate an increase in unconfined compression strength and a decrease in hydraulic conductivity of the treated soil.
Keywords: Pavement failure, soft soil, sustainability, stabilization, fly ash, strength and permeability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34391250 Fabrication of Single Crystal of Mg Alloys Containing Rare Earth Elements
Authors: Joon Ho Kim, Tae Kwon Ha
Abstract:
Single crystals of Magnesium alloys such as Mg-1Al, Mg-1Zn-0.5Y, Mg-3Li, and AZ31 alloys were successfully fabricated in this study by employing the modified Bridgman method. Single crystals of pure Mg were also made in this study. To determine the exact orientation of crystals, Laue back-reflection method and pole figure measurement were carried out on each single crystal. Dimensions of single crystals were 10 mm in diameter and 120 mm in length. Hardness and compression tests were conducted and the results revealed that hardness and the strength strongly depended on the orientation. The closer to basal one the orientation was, the higher hardness and compressive strength were. The effect of alloying was not higher than that of orientation. After compressive deformation of single crystals, the orientation of the crystals was found to rotate and to be parallel to the basal orientation.Keywords: Compressive strength, Hardness, Mg alloys, Modified Bridgman method, Orientation, Pole figure, Single crystal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18951249 Effect of Rubber Treatment on Compressive Strength and Modulus of Elasticity of Self-Compacting Rubberized Concrete
Authors: I. Miličević, M. Hadzima Nyarko, R. Bušić, J. Simonović Radosavljević, M. Prokopijević, K. Vojisavljević
Abstract:
This paper investigates the effects of different treatment methods of rubber aggregates for self-compacting concrete (SCC) on compressive strength and modulus of elasticity. SCC mixtures with 10% replacement of fine aggregate with crumb rubber by total aggregate volume and with different aggregate treatment methods were investigated. The rubber aggregate was treated in three different methods: dry process, water-soaking, and NaOH treatment plus water soaking. Properties of SCC in a fresh and hardened state were tested and evaluated. Scanning electron microscope (SEM) analysis of three different SCC patches were made and discussed. It was observed that applying the proposed NaOH plus water soaking method resulted in the improvement of fresh and hardened concrete properties. It resulted in a more uniform distribution of rubber particles in the cement matrix, a better bond between rubber particles and the cement matrix, and higher compressive strength of SCC rubberized concrete.
Keywords: Compressive strength, modulus of elasticity, NaOH treatment, rubber aggregate, self-compacting rubberized concrete, scanning electron microscope analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6411248 Study on Compressive Strength and Setting Times of Fly Ash Concrete after Slump Recovery Using Superplasticizer
Authors: Chaiyakrit Raoupatham, Ram Hari Dhakal, Chalermchai Wanichlamlert
Abstract:
Fresh concrete has one of dynamic properties known as slump. Slump of concrete is design to compatible with placing method. Due to hydration reaction of cement, the slump of concrete is loss through time. Therefore, delayed concrete probably get reject because slump is unacceptable. In order to recover the slump of delayed concrete the second dose of superplasticizer (naphthalene based type F) is added into the system, the slump recovery can be done as long as the concrete is not setting. By adding superplasticizer as solution for recover unusable slump loss concrete may affects other concrete properties. Therefore, this paper was observed setting times and compressive strength of concrete after being re-dose with chemical admixture type F (superplasticizer, naphthalene based) for slump recovery. The concrete used in this study was fly ash concrete with fly ash replacement of 0%, 30% and 50% respectively. Concrete mix designed for test specimen was prepared with paste content (ratio of volume of cement to volume of void in the aggregate) of 1.2 and 1.3, water-to-binder ratio (w/b) range of 0.3 to 0.58, initial dose of superplasticizer (SP) range from 0.5 to 1.6%. The setting times of concrete were tested both before and after re-dosed with different amount of second dose and time of dosing. The research was concluded that addition of second dose of superplasticizer would increase both initial and final setting times accordingly to dosage of addition. As for fly ash concrete, the prolongation effect was higher as the replacement of fly ash increase. The prolongation effect can reach up to maximum about 4 hours. In case of compressive strength, the re-dosed concrete has strength fluctuation within acceptable range of ±10%.Keywords: Compressive strength, Fly ash concrete, Second dose of superplasticizer, Slump recovery, Setting times.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19341247 Optimization of Asphalt Binder Modified with PP/SBS/Nanoclay Nanocomposite using Taguchi Method
Authors: Abolghasem Yazdani, Sara Pourjafar
Abstract:
This study has applied the L16 orthogonal array of the Taguchi method to determine the optimized polymeric Nanocomposite asphalt binder. Three control factors are defined as polypropylene plastomer (PP), styrene-butadiene-styrene elastomer (SBS) and Nanoclay. Four level of concentration contents are introduced for prepared asphalt binder samples. all samples were prepared with 4.5% of bitumen 60/70 content. Compressive strength tests were carried out for defining the optimized sample via QUALITEK-4 software. SBS with 3%, PP with 5 % and Nanoclay with 1.5% of concentrations are defined as the optimized Nanocomposite asphalt binders. The confirmation compressive strength and also softening point tests showed that modification of asphalt binders with this method, improved the compressive strength and softening points of asphalt binders up to 55%.Keywords: modified asphalt, Polypropylene, SBS, Nanoclay, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31751246 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes
Authors: P. Parthiban, J. Karthikeyan
Abstract:
This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.
Keywords: Alccofine, compressive strength, RCPT, wood ash pellets.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6671245 Prediction of Slump in Concrete using Artificial Neural Networks
Authors: V. Agrawal, A. Sharma
Abstract:
High Strength Concrete (HSC) is defined as concrete that meets special combination of performance and uniformity requirements that cannot be achieved routinely using conventional constituents and normal mixing, placing, and curing procedures. It is a highly complex material, which makes modeling its behavior a very difficult task. This paper aimed to show possible applicability of Neural Networks (NN) to predict the slump in High Strength Concrete (HSC). Neural Network models is constructed, trained and tested using the available test data of 349 different concrete mix designs of High Strength Concrete (HSC) gathered from a particular Ready Mix Concrete (RMC) batching plant. The most versatile Neural Network model is selected to predict the slump in concrete. The data used in the Neural Network models are arranged in a format of eight input parameters that cover the Cement, Fly Ash, Sand, Coarse Aggregate (10 mm), Coarse Aggregate (20 mm), Water, Super-Plasticizer and Water/Binder ratio. Furthermore, to test the accuracy for predicting slump in concrete, the final selected model is further used to test the data of 40 different concrete mix designs of High Strength Concrete (HSC) taken from the other batching plant. The results are compared on the basis of error function (or performance function).Keywords: Artificial Neural Networks, Concrete, prediction ofslump, slump in concrete
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35981244 Effect of Incremental Forming Parameters on Titanium Alloys Properties
Authors: Petr Homola, Lucie Novakova, Vaclav Kafka, Mariluz P. Oscoz
Abstract:
Shear spinning is closely related to the asymmetric incremental sheet forming (AISF) that could significantly reduce costs incurred by the fabrication of complex aeronautical components with a minimal environmental impact. The spinning experiments were carried out on commercially pure titanium (Ti-Gr2) and Ti-6Al-4V (Ti-Gr5) alloy. Three forming modes were used to characterize the titanium alloys properties from the point of view of different spinning parameters. The structure and properties of the materials were assessed by means of metallographic analyses and microhardness measurements. The highest value wall angle failure limit was achieved using spinning parameters mode for both materials. The feed rate effect was observed only in the samples from the Ti-Gr2 material, when a refinement of the grain microstructure with lower feed rate and higher tangential speed occurred. Ti-Gr5 alloy exhibited a decrease of the microhardness at higher straining due to recovery processes.
Keywords: Incremental forming, metallography, shear spinning, titanium alloys.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32851243 Preparation and Bioactivity Evaluation of Bone like Hydroxyapatite - Bioglass Composite
Authors: Seema Kapoor, Uma Batra
Abstract:
In this study, hydroxyapatite (HA) composites are prepared on addition of 30%CaO-30%P2O5-40%Na2 O based glass to pure HA, in proportion of 2, 5, and 10 wt %. Each composition was sintered over a range of temperatures. The quantitative phase analysis was carried out using XRD and the microstructures were studied using SEM. The density, microhardness, and compressive strength have shown increase with the increasing amount of glass addition. The resulting composites have chemical compositions that are similar to the inorganic constituent of the mineral part of bone, and constitutes trace elements like Na. X-ray diffraction showed no decomposition of HA to secondary phases, however, the glass reinforced-HA composites contained a HA phase and variable amounts of tricalcium phosphate phase, depending on the amount of bioglass added. The HA-composite material exhibited higher compressive strength compared to sintered HA. The HA composite reinforced with 10 wt % bioglass showed highest bioactivity level.Keywords: Bioactivity, Bioglass, Compressive strength, Hydroxyapatite.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20091242 Instability Analysis of Laminated Composite Beams Subjected to Parametric Axial Load
Authors: Alireza Fereidooni, Kamran Behdinan, Zouheir Fawaz
Abstract:
The integral form of equations of motion of composite beams subjected to varying time loads are discretized using a developed finite element model. The model consists of a straight five node twenty-two degrees of freedom beam element. The stability analysis of the beams is studied by solving the matrix form characteristic equations of the system. The principle of virtual work and the first order shear deformation theory are employed to analyze the beams with large deformation and small strains. The regions of dynamic instability of the beam are determined by solving the obtained Mathieu form of differential equations. The effects of nonconservative loads, shear stiffness, and damping parameters on stability and response of the beams are examined. Several numerical calculations are presented to compare the results with data reported by other researchers.Keywords: Finite element beam model, Composite Beams, stability analysis
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22201241 Characterization of Fabricated A 384.1-MgO Based Metal Matrix Composite and Optimization of Tensile Strength using Taguchi Techniques
Authors: Nripjit, Anand K Tyagi, Nirmal Singh
Abstract:
The present work consecutively on synthesis and characterization of composites, Al/Al alloy A 384.1 as matrix in which the main ingredient as Al/Al-5% MgO alloy based metal matrix composite. As practical implications the low cost processing route for the fabrication of Al alloy A 384.1 and operational difficulties of presently available manufacturing processes based in liquid manipulation methods. As all new developments, complete understanding of the influence of processing variables upon the final quality of the product. And the composite is applied comprehensively to the acquaintance for achieving superiority of information concerning the specific heat measurement of a material through the aid of thermographs. Products are evaluated concerning relative particle size and mechanical behavior under tensile strength. Furthermore, Taguchi technique was employed to examine the experimental optimum results are achieved, owing to effectiveness of this approach.Keywords: MMC, Thermographs, Tensile strength, Taguchi technique, Optimal parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16391240 Physical-Mechanical Characteristics of Monocrystalline Si1-xGex (x≤0,02) Solid Solutions
Authors: I. Kurashvili, A. Sichinava, G. Bokuchava, G. Darsavelidze
Abstract:
Si-Ge solid solutions (bulk poly- and mono-crystalline samples, thin films) are characterized by high perspectives for application in semiconductor devices, in particular, optoelectronics and microelectronics. From this point of view, complex studying of structural state of the defects and structural-sensitive physical properties of Si-Ge solid solutions depending on the contents of Si and Ge components is very important. Present work deals with the investigations of microstructure, microhardness, internal friction and shear modulus of Si1-xGex(x≤0,02) bulk monocrystals conducted at room temperature. Si-Ge bulk crystals were obtained by Czochralski method in [111] crystallographic direction. Investigated monocrystalline Si-Ge samples are characterized by p-type conductivity and carriers’ concentration 5.1014-1.1015cm-3. Microhardness was studied on Dynamic Ultra Micro hardness Tester DUH-201S with Berkovich indenter. Investigate samples are characterized with 0,5x0,5x(10-15)mm3 sizes, oriented along [111] direction at torsion oscillations ≈1Hz, multistage changing of internal friction and shear modulus has been revealed in an interval of strain amplitude of 10-5-5.10-3. Critical values of strain amplitude have been determined at which hysteretic changes of inelastic characteristics and microplasticity are observed. The critical strain amplitude and elasticity limit values are also determined. Dynamic mechanical characteristics decreasing trend is shown with increasing Ge content in Si-Ge solid solutions. Observed changes are discussed from the point of view of interaction of various dislocations with point defects and their complexes in a real structure of Si-Ge solid solutions.Keywords: Internal friction, microhardness, relaxation processes, shear modulus, Si-Ge.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567