Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33093
Characterization of a Hypoeutectic Al Alloy Obtained by Selective Laser Melting

Authors: Jairo A. Muñoz, Alexander Komissarov, Alexander Gromov

Abstract:

In this investigation, a hypoeutectic AlSi11Cu alloy was printed. This alloy was obtained in powder form with an average particle size of 40 µm. Bars 20 mm in diameter and 100 mm in length were printed with the building direction parallel to the bars' longitudinal direction. The microstructural characterization demonstrated an Al matrix surrounded by a Si network forming a coral-like pattern. The microstructure of the alloy showed a heterogeneous behavior with a mixture of columnar and equiaxed grains. Likewise, the texture indicated that the columnar grains were preferentially oriented towards the building direction, while the equiaxed followed a texture dominated by the cube component. On the other hand, the as-printed material strength showed higher values than those obtained in the same alloy using conventional processes such as casting. In addition, strength and ductility differences were found in the printed material, depending on the measurement direction. The highest values were obtained in the radial direction (565 MPa maximum strength and 4.8% elongation to failure). The lowest values corresponded to the transverse direction (508 MPa maximum strength and 3.2 elongation to failure), which corroborate the material anisotropy.

Keywords: Additive manufacturing, aluminium alloy, melting pools, tensile test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 697

References:


[1] J. Podroužek, M. Marcon, K. Ninčević, R. Wan-Wendner, Bio-Inspired 3D Infill Patterns for Additive Manufacturing and Structural Applications, Materials (Basel). 12 (2019). doi:10.3390/ma12030499.
[2] A. Paolini, S. Kollmannsberger, E. Rank, Additive manufacturing in construction: A review on processes, applications, and digital planning methods, Addit. Manuf. 30 (2019) 100894. doi: https://doi.org/10.1016/j.addma.2019.100894.
[3] D. Delgado Camacho, P. Clayton, W.J. O’Brien, C. Seepersad, M. Juenger, R. Ferron, S. Salamone, Applications of additive manufacturing in the construction industry – A forward-looking review, Autom. Constr. 89 (2018) 110–119. doi:https://doi.org/10.1016/j.autcon.2017.12.031.
[4] T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Compos. Part B Eng. 143 (2018) 172–196. doi: https://doi.org/10.1016/j.compositesb.2018.02.012.
[5] M. Attaran, The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing, Bus. Horiz. 60 (2017) 677–688. doi:https://doi.org/10.1016/j.bushor.2017.05.011.
[6] J. Jiang, X. Xu, J. Stringer, Support Structures for Additive Manufacturing: A Review, J. Manuf. Mater. Process. 2 (2018). doi: 10.3390/jmmp2040064.
[7] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, L.E. Loh, S.L. Sing, Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015) 41101. doi:10.1063/1.4935926.
[8] W.S.W. Harun, K. Kadirgama, M. Samykano, D. Ramasamy, I. Ahmad, M. Moradi, 5 - Mechanical behavior of selective laser melting-produced metallic biomaterials, in: J.P. Davim (Ed.), Mech. Behav. Biomater., Woodhead Publishing, 2019: pp. 101–116. doi: https://doi.org/10.1016/B978-0-08-102174-3.00005-X.
[9] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.B. Williams, C.C.L. Wang, Y.C. Shin, S. Zhang, P.D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, Comput. Des. 69 (2015) 65–89. doi: https://doi.org/10.1016/j.cad.2015.04.001.
[10] S. Singh, S. Ramakrishna, R. Singh, Material issues in additive manufacturing: A review, J. Manuf. Process. 25 (2017) 185–200. doi: https://doi.org/10.1016/j.jmapro.2016.11.006.
[11] N.T. Aboulkhair, M. Simonelli, L. Parry, I. Ashcroft, C. Tuck, R. Hague, 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting, Prog. Mater. Sci. 106 (2019) 100578. doi: https://doi.org/10.1016/j.pmatsci.2019.100578.
[12] H. Zhang, H. Zhu, T. Qi, Z. Hu, X. Zeng, Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties, Mater. Sci. Eng. A. 656 (2016) 47–54. doi: https://doi.org/10.1016/j.msea.2015.12.101.
[13] N. Kaufmann, M. Imran, T.M. Wischeropp, C. Emmelmann, S. Siddique, F. Walther, Influence of Process Parameters on the Quality of Aluminium Alloy EN AW 7075 Using Selective Laser Melting (SLM), Phys. Procedia. 83 (2016) 918–926. doi: https://doi.org/10.1016/j.phpro.2016.08.096.
[14] A. Aversa, G. Marchese, A. Saboori, E. Bassini, D. Manfredi, S. Biamino, D. Ugues, P. Fino, M. Lombardi, New Aluminum Alloys Specifically Designed for Laser Powder Bed Fusion: A Review, Materials (Basel). 12 (2019). doi: 10.3390/ma12071007.
[15] F. Trevisan, F. Calignano, M. Lorusso, J. Pakkanen, A. Aversa, E.P. Ambrosio, M. Lombardi, P. Fino, D. Manfredi, On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties, Materials (Basel). 10 (2017). doi: 10.3390/ma10010076.
[16] X. Liu, C. Zhao, X. Zhou, Z. Shen, W. Liu, Microstructure of selective laser melted AlSi10Mg alloy, Mater. Des. 168 (2019) 107677. doi: https://doi.org/10.1016/j.matdes.2019.107677.
[17] F. Yan, W. Xiong, E.J. Faierson, Grain Structure Control of Additively Manufactured Metallic Materials, Materials (Basel). 10 (2017). doi: 10.3390/ma10111260.
[18] Y. Zhu, X. Tian, J. Li, H. Wang, The anisotropy of laser melting deposition additive manufacturing Ti–6.5Al–3.5Mo–1.5Zr–0.3Si titanium alloy, Mater. Des. 67 (2015) 538–542. doi: https://doi.org/10.1016/j.matdes.2014.11.001.
[19] L. Hitzler, J. Hirsch, B. Heine, M. Merkel, W. Hall, A. Öchsner, On the Anisotropic Mechanical Properties of Selective Laser-Melted Stainless Steel, Materials (Basel). 10 (2017). doi: 10.3390/ma10101136.
[20] Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor, Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review, Mater. Des. 139 (2018) 565–586. doi: https://doi.org/10.1016/j.matdes.2017.11.021.
[21] I. Rosenthal, A. Stern, N. Frage, Microstructure and Mechanical Properties of AlSi10Mg Parts Produced by the Laser Beam Additive Manufacturing (AM) Technology, Metallogr. Microstruct. Anal. 3 (2014) 448–453. doi:10.1007/s13632-014-0168-y.
[22] Y.J. Liu, Z. Liu, Y. Jiang, G.W. Wang, Y. Yang, L.C. Zhang, Gradient in microstructure and mechanical property of selective laser melted AlSi10Mg, J. Alloys Compd. 735 (2018) 1414–1421. doi: https://doi.org/10.1016/j.jallcom.2017.11.020.
[23] J. Wu, X.Q. Wang, W. Wang, M.M. Attallah, M.H. Loretto, Microstructure and strength of selectively laser melted AlSi10Mg, Acta Mater. 117 (2016) 311–320. doi: https://doi.org/10.1016/j.actamat.2016.07.012.
[24] U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, M.M. Attallah, Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development, Mater. Des. 105 (2016) 212–222. doi: https://doi.org/10.1016/j.matdes.2016.05.066.
[25] N.T. Aboulkhair, N.M. Everitt, I. Ashcroft, C. Tuck, Reducing porosity in AlSi10Mg parts processed by selective laser melting, Addit. Manuf. 1–4 (2014) 77–86. doi: https://doi.org/10.1016/j.addma.2014.08.001.
[26] J. Alberto Muñoz, A. Komissarov, M. Avalos, R.E. Bolmaro, Heat treatment effect on an AA6063 alloy, Mater. Lett. 277 (2020) 128338. doi: https://doi.org/10.1016/j.matlet.2020.128338.
[27] J.A. Muñoz, O.F. Higuera, V. Tartalini, P. Risso, M. Avalos, R.E. Bolmaro, Equal channel angular sheet extrusion (ECASE) as a precursor of heterogeneity in an AA6063-T6 alloy, Int. J. Adv. Manuf. Technol. 102 (2019) 3459–3471. doi: 10.1007/s00170-019-03425-7.
[28] J.A. Muñoz, M. Avalos, R.E. Bolmaro, Heterogeneity of strain path, texture and microstructure evolution of AA6063-T6 processed by Equal Channel Angular Sheet Extrusion (ECASE), J. Alloys Compd. 768 (2018) 349–357. doi: 10.1016/j.jallcom.2018.07.216.
[29] D. Song, G. Wang, Z. Zhou, E.E. Klu, B. Gao, A. Ma, Y. Wu, J. Sun, J. Jiang, X. Ma, Developing a high-strength Al–11Si alloy with improved ductility by combining ECAP and cryorolling, Mater. Sci. Eng. A. 773 (2020) 138880. doi: 10.1016/j.msea.2019.138880.