Search results for: Dye-sensitized solar cells
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 956

Search results for: Dye-sensitized solar cells

506 Preparation and Characterization of Pectin Based Proton Exchange Membranes Derived by Solution Casting Method for Direct Methanol Fuel Cells

Authors: Mohanapriya Subramanian, V. Raj

Abstract:

Direct methanol fuel cells (DMFCs) are considered to be one of the most promising candidates for portable and stationary applications in the view of their advantages such as high energy density, easy manipulation, high efficiency and they operate with liquid fuel which could be used without requiring any fuel-processing units. Electrolyte membrane of DMFC plays a key role as a proton conductor as well as a separator between electrodes. Increasing concern over environmental protection, biopolymers gain tremendous interest owing to their eco-friendly bio-degradable nature. Pectin is a natural anionic polysaccharide which plays an essential part in regulating mechanical behavior of plant cell wall and it is extracted from outer cells of most of the plants. The aim of this study is to develop and demonstrate pectin based polymer composite membranes as methanol impermeable polymer electrolyte membranes for DMFCs. Pectin based nanocomposites membranes are prepared by solution-casting technique wherein pectin is blended with chitosan followed by the addition of optimal amount of sulphonic acid modified Titanium dioxide nanoparticle (S-TiO2). Nanocomposite membranes are characterized by Fourier Transform-Infra Red spectroscopy, Scanning electron microscopy, and Energy dispersive spectroscopy analyses. Proton conductivity and methanol permeability are determined into order to evaluate their suitability for DMFC application. Pectin-chitosan blends endow with a flexible polymeric network which is appropriate to disperse rigid S-TiO2 nanoparticles. Resulting nanocomposite membranes possess adequate thermo-mechanical stabilities as well as high charge-density per unit volume. Pectin-chitosan natural polymeric nanocomposite comprising optimal S-TiO2 exhibits good electrochemical selectivity and therefore desirable for DMFC application.

Keywords: Biopolymers, fuel cells, nanocomposite, methanol crossover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1202
505 Effect of Chemical Pretreatments and Dehydration Methods on Quality Characteristics of Tomato Powder and Its Storage Stability

Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi

Abstract:

Dehydration process was carried out for tomato slices of var. Avinash after giving different pre-treatments such as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl). Untreated samples served as control. Solar drier and continuous conveyor (tunnel) drier were used for dehydration. Quality characteristics of tomato slices viz. moisture content, sugar, titratable acidity, lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning as affected by dehydration process were studied. Storage study was also carried out for a period of six months for tomato powder packed into different types of packaging materials viz. metalized polyester (MP) film and low density poly ethylene (LDPE). Changes in lycopene content and non-enzymatic browning (NEB) were estimated during storage at room temperature. Pretreatment of 5 mm thickness of tomato slices with calcium chloride in combination with potassium metabisulphite and drying using a tunnel drier with subsequent storage of product in metalized polyester bags was selected as the best process.

Keywords: Drying pretreatments, Solar drying, Tomato powder, Tunnel drying

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
504 Unsupervised Segmentation Technique for Acute Leukemia Cells Using Clustering Algorithms

Authors: N. H. Harun, A. S. Abdul Nasir, M. Y. Mashor, R. Hassan

Abstract:

Leukaemia is a blood cancer disease that contributes to the increment of mortality rate in Malaysia each year. There are two main categories for leukaemia, which are acute and chronic leukaemia. The production and development of acute leukaemia cells occurs rapidly and uncontrollable. Therefore, if the identification of acute leukaemia cells could be done fast and effectively, proper treatment and medicine could be delivered. Due to the requirement of prompt and accurate diagnosis of leukaemia, the current study has proposed unsupervised pixel segmentation based on clustering algorithm in order to obtain a fully segmented abnormal white blood cell (blast) in acute leukaemia image. In order to obtain the segmented blast, the current study proposed three clustering algorithms which are k-means, fuzzy c-means and moving k-means algorithms have been applied on the saturation component image. Then, median filter and seeded region growing area extraction algorithms have been applied, to smooth the region of segmented blast and to remove the large unwanted regions from the image, respectively. Comparisons among the three clustering algorithms are made in order to measure the performance of each clustering algorithm on segmenting the blast area. Based on the good sensitivity value that has been obtained, the results indicate that moving kmeans clustering algorithm has successfully produced the fully segmented blast region in acute leukaemia image. Hence, indicating that the resultant images could be helpful to haematologists for further analysis of acute leukaemia.

Keywords: Acute Leukaemia Images, Clustering Algorithms, Image Segmentation, Moving k-Means.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2789
503 Laboratory Scale Extraction of Sugar Cane using High Electric Field Pulses

Authors: M. N. Eshtiaghi, N. Yoswathana

Abstract:

The aim of this study was to extract sugar from sugarcane using high electric field pulse (HELP) as a non-thermal cell permeabilization method. The result of this study showed that it is possible to permeablize sugar cane cells using HELP at very short times (less than 10 sec.) and at room temperature. Increasing the field strength (from 0.5kV/cm to 2kV/cm) and pulse number (1 to 12) led to increasing the permeabilization of sugar cane cells. The energy consumption during HELP treatment of sugar cane (2.4 kJ/kg) was about 100 times less compared to thermal cell disintegration at 85 <=C (about 271.7 kJ/kg). In addition, it was possible to extract sugar cane at a moderate temperature (45 <=C) using HELP pretreatment. With combination of HELP pretreatment followed by thermal extraction at 75 <=C, extraction resulted in up to 3% more sugar (on the basis of total extractable sugar) compared to samples without HELP pretreatment.

Keywords: Cell permeabilization, High electric field pulses, Non-thermal processing, Sugar cane extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2748
502 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells

Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi

Abstract:

In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.

Keywords: Alkaline fuel cell, graphene, metal-free catalyst, paraphenylenediamine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1742
501 Energy Policy in Nigeria: Prospects and Challenges

Authors: N. Garba, A. Adamu, A. I. Augie

Abstract:

Energy is the major force that drives any country`s socio-economic development. Without electricity, the country could be at risk of losing many potential investors. As such, good policy implementation could play a significant role in harnessing all the available energy resources. Nigeria has the prospects of meeting its energy demand and supply if there are good policies and proper implementation of them. The current energy supply needs to improve in order to meet the present and future demand. Sustainable energy development is the way forward. Renewable energy plays a significant role in socio-economic development of any country. Nigeria is a country blessed with abundant natural resources such as, solar radiation for solar power, water for hydropower, wind for wind power, and biomass from both plants and animal’s waste. Both conventional energy (fossil fuel) and unconventional energy (renewable) could be harmonized like in the case of energy mix or biofuels. Biofuels like biodiesel could be produced from biomass and combined with petro-diesel in different ratios. All these can be achieved if good policy is in place. The challenges could be well overcome with good policy, masses awareness, technological knowledge and other incentives that can attract investors in Nigerian energy sector.

Keywords: Nigeria, renewable energy, Renewable Energy and Efficiency Partnership, Rural Electrification Agency, International Renewable Energy Agency, ECOWAS, Energy Commission of Nigeria

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643
500 Study the Biological Activities of Tribulus Terrestris Extracts

Authors: Ahmed A. Hussain, Abbas A. Mohammed, Heba. H. Ibrahim, Amir H. Abbas

Abstract:

In this study the extracts of the Iraqi herb Tribulus terrestris (Al-Hassage or Al-Kutub) was done by using of polar and non polar solvents, then the biological activity of these extractants was studied in three fields, First, the antibacterial activity (in vitro) on gram positive bacteria (Staphylococcus aureus), and gram negative bacteria (E. coli, Proteus vulgaris, Pseudomonas aerugiuosa, and Klebsiella), all extracts showed considerable activity against all bacteria. Second, the effect of extracts on free serum testosterone level in male mice (in vivo), the alcoholic, and acetonitrilic extracts showed significant (P < 0.05) increase in free serum testosterone level, and we found that the extracts contained compounds with less genotoxic effects in mice germ cells. 3rd, was to study the effect of methanolic extract of T. terrestris in diabetes management.

Keywords: Genotoxic, germ cells, tribulus terrestris, testosterone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4692
499 Bone Generation through Mechanical Loading

Authors: R. S. A. Nesbitt, J. Macione, A. Debroy, S. P. Kotha

Abstract:

Bones are dynamic and responsive organs, they regulate their strength and mass according to the loads which they are subjected. Because, the Wnt/β-catenin pathway has profound effects on the regulation of bone mass, we hypothesized that mechanical loading of bone cells stimulates Wnt/β-catenin signaling, which results in the generation of new bone mass. Mechanical loading triggers the secretion of the Wnt molecule, which after binding to transmembrane proteins, causes GSK-3β (Glycogen synthase kinase 3 beta) to cease the phosphorylation of β-catenin. β-catenin accumulation in the cytoplasm, followed by its transport into the nucleus, binding to transcription factors (TCF/LEF) that initiate transcription of genes related to bone formation. To test this hypothesis, we used TOPGAL (Tcf Optimal Promoter β-galactosidase) mice in an experiment in which cyclic loads were applied to the forearm. TOPGAL mice are reporters for cells effected by the Wnt/β-catenin signaling pathway. TOPGAL mice are genetically engineered mice in which transcriptional activation of β- catenin, results in the production of an enzyme, β-galactosidase. The presence of this enzyme allows us to localize transcriptional activation of β-catenin to individual cells, thereby, allowing us to quantify the effects that mechanical loading has on the Wnt/β-catenin pathway and new bone formation. The ulnae of loaded TOPGAL mice were excised and transverse slices along different parts of the ulnar shaft were assayed for the presence of β-galactosidase. Our results indicate that loading increases β-catenin transcriptional activity in regions where this pathway is already primed (i.e. where basal activity is already higher) in a load magnitude dependent manner. Further experiments are needed to determine the temporal and spatial activation of this signaling in relation to bone formation.

Keywords: Bone Resorption and Formation, Mechanical Loading of Bone, Wnt Signaling Pathway & β-catenin.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
498 Submicron Laser-Induced Dot, Ripple and Wrinkle Structures and Their Applications

Authors: P. Slepicka, N. Slepickova Kasalkova, I. Michaljanicova, O. Nedela, Z. Kolska, V. Svorcik

Abstract:

Polymers exposed to laser or plasma treatment or modified with different wet methods which enable the introduction of nanoparticles or biologically active species, such as amino-acids, may find many applications both as biocompatible or anti-bacterial materials or on the contrary, can be applied for a decrease in the number of cells on the treated surface which opens application in single cell units. For the experiments, two types of materials were chosen, a representative of non-biodegradable polymers, polyethersulphone (PES) and polyhydroxybutyrate (PHB) as biodegradable material. Exposure of solid substrate to laser well below the ablation threshold can lead to formation of various surface structures. The ripples have a period roughly comparable to the wavelength of the incident laser radiation, and their dimensions depend on many factors, such as chemical composition of the polymer substrate, laser wavelength and the angle of incidence. On the contrary, biopolymers may significantly change their surface roughness and thus influence cell compatibility. The focus was on the surface treatment of PES and PHB by pulse excimer KrF laser with wavelength of 248 nm. The changes of physicochemical properties, surface morphology, surface chemistry and ablation of exposed polymers were studied both for PES and PHB. Several analytical methods involving atomic force microscopy, gravimetry, scanning electron microscopy and others were used for the analysis of the treated surface. It was found that the combination of certain input parameters leads not only to the formation of optimal narrow pattern, but to the combination of a ripple and a wrinkle-like structure, which could be an optimal candidate for cell attachment. The interaction of different types of cells and their interactions with the laser exposed surface were studied. It was found that laser treatment contributes as a major factor for wettability/contact angle change. The combination of optimal laser energy and pulse number was used for the construction of a surface with an anti-cellular response. Due to the simple laser treatment, we were able to prepare a biopolymer surface with higher roughness and thus significantly influence the area of growth of different types of cells (U-2 OS cells).

Keywords: Polymer treatment, laser, periodic pattern, cell response.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781
497 Fiber Microstructure in Solanum Found in Thailand

Authors: Aree Thongpukdee, Chockpisit Thepsithar, Sujitra Timchookul

Abstract:

The study aimed to investigate characteristics of vegetative tissue for taxonomic purpose and possibly trend of waste application in industry. Stems and branches of 15 species in Solanum found in Thailand were prepared for fiber and examined by light microscopy. Microstructural characteristic data of fiber i.e. fiber length and width, fiber lumen diameter and fiber cell wall thickness were recorded. The longest average fiber cell length (>3.9 mm.) were obtained in S. lycopersicum L. and S. tuberosum L. Fiber cells from S. lycopersicum also revealed the widest average diameter of whole cell and its lumen at >45.5 μm and >29 μm respectively. However fiber cells with thickest wall of > 9.6 μm were belonged to the ornamental tree species, S. wrightii Benth. The results showed that the slenderness ratio, Runkel ratio, and flexibility coefficient, with potentially suitable for feedstock in paper industry fell in 4 exotic species, i.e. Solanumamericanum L., S. lycopersicum, S. seaforthianum Andr., and S. tuberosum L

Keywords: Fiber, microstructure, Solanaceae, Solanum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
496 An MCDM Approach to Selection Scheduling Rule in Robotic Flexibe Assembly Cells

Authors: Khalid Abd, Kazem Abhary, Romeo Marian

Abstract:

Multiple criteria decision making (MCDM) is an approach to ranking the solutions and finding the best one when two or more solutions are provided. In this study, MCDM approach is proposed to select the most suitable scheduling rule of robotic flexible assembly cells (RFACs). Two MCDM approaches, Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) are proposed for solving the scheduling rule selection problem. The AHP method is employed to determine the weights of the evaluation criteria, while the TOPSIS method is employed to obtain final ranking order of scheduling rules. Four criteria are used to evaluate the scheduling rules. Also, four scheduling policies of RFAC are examined to choose the most appropriate one for this purpose. A numerical example illustrates applications of the suggested methodology. The results show that the methodology is practical and works in RFAC settings.

Keywords: AHP, TOPSIS, Scheduling rules selection

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
495 Microbial Oil Production by Isolated Oleaginous Yeast Torulaspora globosa YU5/2

Authors: Ratanaporn Leesing, Ratanaporn Baojungharn

Abstract:

Microbial oil was produced by soil isolated oleaginous yeast YU5/2 in flask-batch fermentation. The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA and it was identified as Torulaspora globosa. T. globosa YU5/2 supported maximum values of 0.520 g/L/d, 0.472 g lipid/g cells, 4.16 g/L, and 0.156 g/L/d for volumetric lipid production rate, and specific yield of lipid, lipid concentration, and specific rate of lipid production respectively, when culture was performed in nitrogen-limiting medium supplemented with 80g/L glucose. Among the carbon sources tested, maximum cell yield coefficient (YX/S, g/L), maximum specific yield of lipid (YP/X, g lipid/g cells) and volumetric lipid production rate (QP, g/L/d) were found of 0.728, 0.237, and 0.619, respectively, using sweet potato tubers hydrolysates as carbon source.

Keywords: Microbial oil, oleaginous yeast, Torulasporaglobosa YU5/2, sweet potato tubers, kinetic parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2163
494 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: Energy calculation, energy consumption, energy simulation, IDA ICE, TMF Energi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
493 The Methodology of Flip Chip Using Astro Place and Route Tool

Authors: Rohaya Abdul Wahab, Raja Mohd Fuad Tengku Aziz, Nazaliza Othman, Sharifah Saleh, Nabihah Razali, Rozaimah Baharim, Md Hanif Md Nasir

Abstract:

This paper will discuss flip chip methodology, in which I/O pads, standard cells, macros and bump cells array are placed in the floorplan, then routed using Astro place and route tool. Final DRC and LVS checking is done using Calibre verification tool. The design vehicle to run this methodology is an OpenRISC design targeted to Silterra 0.18 micrometer technology with 6 metal layers for routing. Astro has extensive support for flip chip placement and routing. Astro tool commands for flip chip are straightforward approach like the conventional standard wire bond packaging. However since we do not have flip chip commands in our Astro tool, no LEF file for bump cell and no LEF file for flip chip I/O pad, we create our own methodology to prepare for future flip chip tapeout. 

Keywords: Astro, bump cell, Calibre, flip chip, LEF, methodology, SCHEME, TCL.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
492 Solar Thermal Aquaculture System Controller Based on Artificial Neural Network

Authors: A. Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah

Abstract:

Temperature is one of the most principle factors affects aquaculture system. It can cause stress and mortality or superior environment for growth and reproduction. This paper presents the control of pond water temperature using artificial intelligence technique. The water temperature is very important parameter for shrimp growth. The required temperature for optimal growth is 34oC, if temperature increase up to 38oC it cause death of the shrimp, so it is important to control water temperature. Solar thermal water heating system is designed to supply an aquaculture pond with the required hot water in Mersa Matruh in Egypt. Neural networks are massively parallel processors that have the ability to learn patterns through a training experience. Because of this feature, they are often well suited for modeling complex and non-linear processes such as those commonly found in the heating system. Artificial neural network is proposed to control water temperature due to Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques. They have been used to solve complicated practical problems. Moreover this paper introduces a complete mathematical modeling and MATLAB SIMULINK model for the aquaculture system. The simulation results indicate that, the control unit success in keeping water temperature constant at the desired temperature by controlling the hot water flow rate.

Keywords: artificial neural networks, aquaculture, forced circulation hot water system,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2055
491 Low Energy Technology for Leachate Valorisation

Authors: Jesús M. Martín, Francisco Corona, Dolores Hidalgo

Abstract:

Landfills present long-term threats to soil, air, groundwater and surface water due to the formation of greenhouse gases (methane gas and carbon dioxide) and leachate from decomposing garbage. The composition of leachate differs from site to site and also within the landfill. The leachates alter with time (from weeks to years) since the landfilled waste is biologically highly active and their composition varies. Mainly, the composition of the leachate depends on factors such as characteristics of the waste, the moisture content, climatic conditions, degree of compaction and the age of the landfill. Therefore, the leachate composition cannot be generalized and the traditional treatment models should be adapted in each case. Although leachate composition is highly variable, what different leachates have in common is hazardous constituents and their potential eco-toxicological effects on human health and on terrestrial ecosystems. Since leachate has distinct compositions, each landfill or dumping site would represent a different type of risk on its environment. Nevertheless, leachates consist always of high organic concentration, conductivity, heavy metals and ammonia nitrogen. Leachate could affect the current and future quality of water bodies due to uncontrolled infiltrations. Therefore, control and treatment of leachate is one of the biggest issues in urban solid waste treatment plants and landfills design and management. This work presents a treatment model that will be carried out "in-situ" using a cost-effective novel technology that combines solar evaporation/condensation plus forward osmosis. The plant is powered by renewable energies (solar energy, biomass and residual heat), which will minimize the carbon footprint of the process. The final effluent quality is very high, allowing reuse (preferred) or discharge into watercourses. In the particular case of this work, the final effluents will be reused for cleaning and gardening purposes. A minority semi-solid residual stream is also generated in the process. Due to its special composition (rich in metals and inorganic elements), this stream will be valorized in ceramic industries to improve the final products characteristics.

Keywords: Forward osmosis, landfills, leachate valorization, solar evaporation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 955
490 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV(Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system.

The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55km2 for a stationary PV field constituted by HIT PV arrays and approx. 91MW/ km2. In case of a tracker PV field, the required ground area amounts approx.2.4km2 and approx. 20.5MW/ km2.

Keywords: Large PV power plant, solar energy, environmental impact, Dual-axis tracking system, stationary system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3101
489 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: Prospecting, technology forecasting, photovoltaic, urban residences.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1142
488 Experimental and Finite Element Analysis for Mechanics of Soil-Tool Interaction

Authors: A. Armin, R. Fotouhi, W. Szyszkowski

Abstract:

In this paper a 3-D finite element (FE) investigation of soil-blade interaction is described. The effects of blade’s shape and rake angle are examined both numerically and experimentally. The soil is considered as an elastic-plastic granular material with non-associated Drucker-Prager material model. Contact elements with different properties are used to mimic soil-blade sliding and soil-soil cutting phenomena. A separation criterion is presented and a procedure to evaluate the forces acting on the blade is given and discussed in detail. Experimental results were derived from tests using soil bin facility and instruments at the University of Saskatchewan. During motion of the blade, load cells collect data and send them to a computer. The measured forces using load cells had noisy signals which are needed to be filtered. The FE results are compared with experimental results for verification. This technique can be used in blade shape optimization and design of more complicated blade’s shape.

Keywords: Finite element analysis, soil-blade contact modeling, blade force, experimental results.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1182
487 A Robust Method for Finding Nearest-Neighbor using Hexagon Cells

Authors: Ahmad Attiq Al-Ogaibi, Ahmad Sharieh, Moh’d Belal Al-Zoubi, R. Bremananth

Abstract:

In pattern clustering, nearest neighborhood point computation is a challenging issue for many applications in the area of research such as Remote Sensing, Computer Vision, Pattern Recognition and Statistical Imaging. Nearest neighborhood computation is an essential computation for providing sufficient classification among the volume of pixels (voxels) in order to localize the active-region-of-interests (AROI). Furthermore, it is needed to compute spatial metric relationships of diverse area of imaging based on the applications of pattern recognition. In this paper, we propose a new methodology for finding the nearest neighbor point, depending on making a virtually grid of a hexagon cells, then locate every point beneath them. An algorithm is suggested for minimizing the computation and increasing the turnaround time of the process. The nearest neighbor query points Φ are fetched by seeking fashion of hexagon holistic. Seeking will be repeated until an AROI Φ is to be expected. If any point Υ is located then searching starts in the nearest hexagons in a circular way. The First hexagon is considered be level 0 (L0) and the surrounded hexagons is level 1 (L1). If Υ is located in L1, then search starts in the next level (L2) to ensure that Υ is the nearest neighbor for Φ. Based on the result and experimental results, we found that the proposed method has an advantage over the traditional methods in terms of minimizing the time complexity required for searching the neighbors, in turn, efficiency of classification will be improved sufficiently.

Keywords: Hexagon cells, k-nearest neighbors, Nearest Neighbor, Pattern recognition, Query pattern, Virtually grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2802
486 Identification of Differentially Expressed Gene(DEG) in Atherosclerotic Lesion by Annealing Control Primer (ACP)-Based Genefishing™ PCR

Authors: M. Maimunah, G. A. Froemming, H. Nawawi, M. I. Nafeeza, O. Effat, M. Y. Rosmadi, M. S. Mohamed Saifulaman

Abstract:

Atherosclerosis was identified as a chronic inflammatory process resulting from interactions between plasma lipoproteins, cellular components (monocyte, macrophages, T lymphocytes, endothelial cells and smooth muscle cells) and the extracellular matrix of the arterial wall. Several types of genes were known to express during formation of atherosclerosis. This study is carried out to identify unknown differentially expressed gene (DEG) in atherogenesis. Rabbit’s aorta tissues were stained by H&E for histomorphology. GeneFishing™ PCR analysis was performed from total RNA extracted from the aorta tissues. The DNA fragment from DEG was cloned, sequenced and validated by Real-time PCR. Histomorphology showed intimal thickening in the aorta. DEG detected from ACP-41 was identified as cathepsin B gene and showed upregulation at week-8 and week-12 of atherogenesis. Therefore, ACP-based GeneFishing™ PCR facilitated identification of cathepsin B gene which was differentially expressed during development of atherosclerosis.

Keywords: Atherosclerosis, GeneFishing™ PCR, cathepsin B gene.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1956
485 Effects of Allelochemical Gramine on Metabolic Activity and Ultrastructure of Cyanobacterium Microcystis aeruginosa

Authors: Y. Hong, H. Y. Hu, A. Sakoda, M. Sagehashi

Abstract:

In this study, inhibition of Microcystis aeruginosa by antialgal alleochemical gramine, was studied by analyzing algal metabolic activity (represented by esterase and total dehydrogenase activities) and cell ultrastructure (showing morphological and ultrastructure alterations using transmission electron microscopy and DNA ladder analysis). After gramine exposure, esterase and total dehydrogenase activities were increased firstly but decreased later. In contrast with the controls, the cells exposed to gramine showed apparent ultrastructure alterations with thylakoids in breakage, phycobilins in decrease, lipid and cyanophycin granules abundant firstly but dissolved afterwards, DNA in fragementation. The occurrence of increase of metabolic activity and specific granules reflected that the resistance of cellular response to gramine was initiated. DNA fragementation associated with the increase of metabolic activity and specific granules hinted that gramine caused M. aeruginosa cells to initiate some morphotype of programmed cell death.

Keywords: Allelochemical, gramine, metabolic activity, Microcystis aeruginosa, ultrastructure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
484 Study of the Oxidation Resistance of Coated AISI 441 Ferritic Stainless Steel for SOFCs

Authors: M. B. Limooei, Hadi Ebrahimifar, Sh. Hosseini

Abstract:

Protective coatings that resist oxide scale growth and decrease chromium evaporation are necessary to make stainless steel interconnect materials for long-term durable operation of solid oxide fuel cells (SOFCs). In this study a layer of cobalt was electroplated on the surface of AISI 441 ferritic stainless steel which is used in solid oxide fuel cells for interconnect applications. The oxidation behavior of coated substrates was studied as a function of time at operating conditions of SOFCs. Cyclic oxidation has been also tested at 800ºC for 100 cycles. Cobalt coating during isothermal oxidation caused to the oxide growth resistance by limiting the outward diffusion of Cr cation and the inward diffusion of oxygen anion. Results of cyclic oxidation exhibited that coated substrates demonstrate an excellent resistance against the spallation and cracking.

Keywords: Oxidation resistance, full cell, Cobalt coating, ferritic stainless steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2032
483 Effect of Pre-drying Treatments on Quality Characteristics of Dehydrated Tomato Slices

Authors: Sharareh Mohseni, Reihaneh Ahmadzadeh Ghavidel

Abstract:

Tomato powder has good potential as substitute of tomato paste and other tomato products. In order to protect physicochemical properties and nutritional quality of tomato during dehydration process, investigation was carried out using different drying methods and pretreatments. Solar drier and continuous conveyor (tunnel) drier were used for dehydration where as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl) selected for treatment.. lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning in addition to moisture, sugar and titrable acidity were studied. Results show that pre-treatment with CaCl2 and NaCl increased water removal and moisture mobility in tomato slices during drying of tomatoes. Where CaCl2 used along with KMS the NEB was recorded the least compared to other treatments and the best results were obtained while using the two chemicals in combination form. Storage studies in LDPE polymeric and metalized polyesters films showed less changes in the products packed in metallized polyester pouches and even after 6 months lycopene content did not decrease more than 20% as compared to the control sample and provide extension of shelf life in acceptable condition for 6 months. In most of the quality characteristics tunnel drier samples presented better values in comparison to solar drier.

Keywords: Dehydration, Tomato powder, Lycopene, Browning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2321
482 Signal and Thermodynamic Analysis for Evaluation of Thermal and Power of Gas Turbine-Solid Oxide Fuel Cell Hybrid System

Authors: R. Mahjoub, K. Maghsoudi Mehraban

Abstract:

In recent years, solid oxide fuel cells have been used as one of the main technologies for the production of electrical energy with high-efficiency ratio, which is used hydrogen and other hydrocarbons as fuels. The fuel cell technology can be used either alone or in hybrid gas turbines systems. In this study, thermodynamics analysis for GT-SOFC hybrid system is developed, and then mass balance and exergy equations have been applied not only on the process but also on the individual components of the hybrid system, which enable us to estimate the thermal efficiency of the hybrid systems. Furthermore, various sources of irreversibility in the solid oxide fuel cell system are discussed, and modeling and parametric analyses like heat and pressure are carried out. This study enables us to consider the irreversible effects of solid oxide fuel cells, and also it leads to the specification of efficiency of the system accurately. Next in the study, both methane and hydrogen as a fuel for SOFC are used and implemented, and finally, our results are compared with other references.

Keywords: hybrid system, gas turbine, entropy and exergy analysis, irreversibility analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 494
481 Blood Cell Dynamics in a Simple Shear Flow using an Implicit Fluid-Structure Interaction Method Based on the ALE Approach

Authors: Choeng-Ryul Choi, Chang-Nyung Kim, Tae-Hyub Hong

Abstract:

A numerical method is developed for simulating the motion of particles with arbitrary shapes in an effectively infinite or bounded viscous flow. The particle translational and angular motions are numerically investigated using a fluid-structure interaction (FSI) method based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (smoothing and remeshing) in FLUENT ( ANSYS Inc., USA). Also, the effects of arbitrary shapes on the dynamics are studied using the FSI method which could be applied to the motions and deformations of a single blood cell and multiple blood cells, and the primary thrombogenesis caused by platelet aggregation. It is expected that, combined with a sophisticated large-scale computational technique, the simulation method will be useful for understanding the overall properties of blood flow from blood cellular level (microscopic) to the resulting rheological properties of blood as a mass (macroscopic).

Keywords: Blood Flow, Fluid-Structure Interaction (FSI), Micro-Channels, Arbitrary Shapes, Red Blood Cells (RBCs)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2310
480 Effect of Wavy Leading-Edges on Wings in Different Planetary Atmospheres

Authors: Vatasta Koul, Ayush Gupta, Vaibhav Sharma, Rajesh Yadav

Abstract:

Today we are unmarking the secrets of the universe by exploring different stars and planets and most of the space exploration is done by unmanned space robots. In addition to our planet Earth, there are pieces of evidence that show other astronomical objects in our solar system such as Venus, Mars, Saturn’s moon Titan and Uranus support the flight of fixed wing air vehicles. In this paper, we take forward the concept of presence of large rounded tubercles along the leading edge of a wing and use it as a passive flow control device that will help in improving its aerodynamic performance and maneuverability. Furthermore, in this research, aerodynamic measurements and performance analysis of wavy leading tubercles on the fixed wings at 5-degree angle of attack are carried out after determination of the flow conditions on the selected planetary bodies. Wavelength and amplitude for the sinusoidal modifications on the leading edge are analyzed and simulations are carried out for three-dimensional NACA 0012 airfoil maintaining unity AR (Aspect Ratio). Tubercles have consistently demonstrated the ability to delay and decrease the severity of stall as per the studies were done in the Earth’s atmosphere. Implementing the same design on the leading edges of Micro-Air Vehicles (MAVs) and UAVs could make these aircrafts more stable over a greater range of angles of attack in different planetary environments of our solar system.

Keywords: Amplitude, NACA0012, tubercles, unmanned space robots.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 659
479 Studies on Physiochemical Properties of Tomato Powder as Affected by Different Dehydration Methods and Pretreatments

Authors: Reihaneh Ahmadzadeh Ghavidel, Mehdi Ghiafeh Davoodi

Abstract:

Tomato powder has good potential as substitute of tomato paste and other tomato products. In order to protect physicochemical properties and nutritional quality of tomato during dehydration process, investigation was carried out using different drying methods and pretreatments. Solar drier and continuous conveyor (tunnel) drier were used for dehydration where as calcium chloride (CaCl2), potassium metabisulphite (KMS), calcium chloride and potassium metabisulphite (CaCl2 +KMS), and sodium chloride (NaCl) selected for treatment.. lycopene content, dehydration ratio, rehydration ratio and non-enzymatic browning in addition to moisture, sugar and titrable acidity were studied. Results show that pre-treatment with CaCl2 and NaCl increased water removal and moisture mobility in tomato slices during drying of tomatoes. Where CaCl2 used along with KMS the NEB was recorded the least compared to other treatments and the best results were obtained while using the two chemicals in combination form. Storage studies in LDPE polymeric and metalized polyesters films showed less changes in the products packed in metallized polyester pouches and even after 6 months lycopene content did not decrease more than 20% as compared to the control sample and provide extension of shelf life in acceptable condition for 6 months. In most of the quality characteristics tunnel drier samples presented better values in comparison to solar drier.

Keywords: Dehydration, Tomato powder, Lycopene, Browning

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4026
478 Generalized Maximal Ratio Combining as a Supra-optimal Receiver Diversity Scheme

Authors: Jean-Pierre Dubois, Rania Minkara, Rafic Ayoubi

Abstract:

Maximal Ratio Combining (MRC) is considered the most complex combining technique as it requires channel coefficients estimation. It results in the lowest bit error rate (BER) compared to all other combining techniques. However the BER starts to deteriorate as errors are introduced in the channel coefficients estimation. A novel combining technique, termed Generalized Maximal Ratio Combining (GMRC) with a polynomial kernel, yields an identical BER as MRC with perfect channel estimation and a lower BER in the presence of channel estimation errors. We show that GMRC outperforms the optimal MRC scheme in general and we hereinafter introduce it to the scientific community as a new “supraoptimal" algorithm. Since diversity combining is especially effective in small femto- and pico-cells, internet-associated wireless peripheral systems are to benefit most from GMRC. As a result, many spinoff applications can be made to IP-based 4th generation networks.

Keywords: Bit error rate, femto-internet cells, generalized maximal ratio combining, signal-to-scattering noise ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2152
477 Vibration Analysis of a Solar Powered UAV

Authors: Kevin Anderson, Sukhwinder Singh Sandhu, Nouh Anies, Shilpa Ravichandra, Steven Dobbs, Donald Edberg

Abstract:

This paper presents the results of a Finite Element based vibration analysis of a solar powered Unmanned Aerial Vehicle (UAV). The purpose of this paper was to quantify the free vibration, forced vibration response due to differing point inputs in order to predict the relative response magnitudes and frequencies at various wing locations of vibration induced power generators (magnet in coil) excited by gust and/or control surface pulse-decays used to help power the flight of the electric UAV. A Fluid Structure Interaction (FSI) study was performed in order to ascertain pertinent design stresses and deflections as well as aerodynamic parameters of the UAV airfoil. The 10 ft span airfoil is modeled using Mylar as the primary material. Results show that the free mode in bending is 4.8 Hz while the first forced bending mode is on range of 16.2 to 16.7 Hz depending on the location of excitation. The free torsional bending mode is 28.3 Hz, and the first forced torsional mode is range of 26.4 to 27.8 Hz, depending on the location of excitation. The FSI results predict the coefficients of aerodynamic drag and lift of 0.0052 and 0.077, respectively, which matches hand-calculations used to validate the Finite Element based results. FSI based maximum von Mises stresses and deflections were found to be 0.282 MPa and 3.4 mm, respectively. Dynamic pressures on the airfoil range from 1.04 to 1.23 kPa corresponding to velocity magnitudes in range of 22 to 66 m/s.

Keywords: ANSYS, finite element, FSI, UAV, vibrations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2751