Search results for: wall thermal insulation efficacy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2060

Search results for: wall thermal insulation efficacy

1640 Indoor Moisture Control of Auckland Houses with Different Ventilation Systems

Authors: Bin Su

Abstract:

Auckland has a temperate climate with comfortable warm, dry summers and mild, wet winters. Auckland house design not only focus on winter thermal performance and indoor thermal condition, but also indoor moisture control, which is closely related to indirect health effects such as dust mites, fungi, etc. Most Auckland houses are designed to use temporary heating for winter indoor thermal comfort. Based on field study data of indoor microclimate conditions of two Auckland townhouses with a whole home mechanical ventilation system or a passive wind directional skylight vent, this study is to evaluate and compare indoor moisture conditions of two insulated townhouses only using temporary heating with different ventilation systems.

Keywords: House ventilation, house thermal design, indoor health condition, indoor moisture control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
1639 Mechanical and Thermal Stresses in Functionally Graded Cylinders

Authors: A. Kurşun, E. Kara, E. Çetin, Ş. Aksoy, A. Kesimli

Abstract:

In this study, thermal elastic stress distribution occurred on long hollow cylinders made of functionally graded material (FGM) was analytically defined under thermal, mechanical and thermo mechanical loads. In closed form solutions for elastic stresses and displacements are obtained analytically by using the infinitesimal deformation theory of elasticity. It was assumed that elasticity modulus, thermal expansion coefficient and density of cylinder materials could change in terms of an exponential function as for that Poisson’s ratio was constant. A gradient parameter n is chosen between - 1 and 1. When n equals to zero, the disc becomes isotropic. Circumferential, radial and longitudinal stresses in the FGMs cylinders are depicted in the figures. As a result, the gradient parameters have great effects on the stress systems of FGMs cylinders.

Keywords: Functionally graded materials, hollow cylinder, thermoelasticity, thermomechanical load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3053
1638 Effect of Adverse Pressure Gradient on a Fluctuating Velocity over the Co-Flow Jet Airfoil

Authors: Morteza Mirhosseini, Amir B. Khoshnevis

Abstract:

The boundary layer separation and new active flow control of a NACA 0025 airfoil were studied experimentally. This new flow control is sometimes known as a co-flow jet (cfj) airfoil. This paper presents the fluctuating velocity in a wall jet over the co-flow jet airfoil subjected to an adverse pressure gradient and a curved surface. In these results, the fluctuating velocity at the inner part increasing by increased the angle of attack up to 12o and this has due to the jet energized, while the angle of attack 20o has different. The airfoil cord based Reynolds number has 105.

Keywords: Adverse pressure gradient, fluctuating velocity, wall jet, co-flow jet airfoil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1637 Application of a Fracture-Mechanics Approach to Gas Pipelines

Authors: Ľubomír Gajdoš, Martin Šperl

Abstract:

This study offers a new simple method for assessing an axial part-through crack in a pipe wall. The method utilizes simple approximate expressions for determining the fracture parameters K, J, and employs these parameters to determine critical dimensions of a crack on the basis of equality between the J-integral and the J-based fracture toughness of the pipe steel. The crack tip constraint is taken into account by the so-called plastic constraint factor C, by which the uniaxial yield stress in the J-integral equation is multiplied. The results of the prediction of the fracture condition are verified by burst tests on test pipes.

Keywords: Axial crack, Fracture-mechanics, J integral, Pipeline wall.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2917
1636 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE

Authors: A. Lakrim, D. Tahri

Abstract:

This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.

Keywords: SiC MPS Diode, electro-thermal, SPICE Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1916
1635 Constructal Enhancement of Fins Design Integrated to Phase Change Materials

Authors: Varun Joshi, Manish K. Rathod

Abstract:

The latent heat thermal energy storage system is a thrust area of research due to exuberant thermal energy storage potential. The thermal performance of PCM is significantly augmented by installation of the high thermal conductivity fins. The objective of the present study is to obtain optimum size and location of the fins to enhance diffusion heat transfer without altering overall melting time. Hence, the constructal theory is employed to eliminate, resize, and re-position the fins. A numerical code based on conjugate heat transfer coupled enthalpy porosity approached is developed to solve Navier-Stoke and energy equation.The numerical results show that the constructal fin design has enhanced the thermal performance along with the increase in the overall volume of PCM when compared to conventional. The overall volume of PCM is found to be increased by half of total of volume of fins. The elimination and repositioning the fins at high temperature gradient from low temperature gradient is found to be vital.

Keywords: Constructal theory, enthalpy porosity approach, phase change materials, fins.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886
1634 Application Research on Large Profiled Statues of Steel-Concrete Composite Shear Wall

Authors: Zhao Cai-qi, Ma Jun

Abstract:

Twin steel plates-concrete composite shear walls are composed of a pair of steel plate layers and a concrete layer sandwiched between them, which have the characteristics of both reinforced concrete shear walls and steel plate shear walls. Twin steel plates-composite shear walls contain very high ultimsate bearing capacity and ductility, which have great potential to be applied in the super high-rise buildings and special structures. In this paper, we analyzed the basic characteristics and stress mechanism of the twin steel plates-composite shear walls. Specifically, we analyzed the effects of the steel plate thickness, wall thickness and concrete strength on the bearing capacity of the twin steel plates-composite shear walls. The analysis results indicate that: (1) the initial shear stiffness and ultimate shear-carrying capacity is not significantly affected by the thickness of concrete wall but by the class of concrete, (2) both factors significantly impact the shear distribution of the shear walls in ultimate shear-carrying capacity. The technique of twin steel plates-composite shear walls has been successfully applied in the construction of an 88-meter Huge Statue of Buddha located in Hunan Province, China. The analysis results and engineering experiences showed that the twin steel plates-composite shear walls have great potential for future research and applications.

Keywords: Twin steel plates-concrete composite shear wall, huge statue of Buddha, shear capacity, initial lateral stiffness, overturning moment bearing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
1633 Simulation of Effect of Current Stressing on Reliability of Solder Joints with Cu-Pillar Bumps

Authors: Y. Li, Q. S. Zhang, H. Z. Huang, B. Y. Wu

Abstract:

The mechanism behind the electromigration and thermomigration failure in flip-chip solder joints with Cu-pillar bumps was investigated in this paper through using finite element method. Hot spot and the current crowding occurrs in the upper corner of copper column instead of solders of the common solder ball. The simulation results show that the change in thermal gradient is noticeable, which might greatly affect the reliability of solder joints with Cu-pillar bumps under current stressing. When the average applied current density is increased from 1×104 A/cm2 to 3×104 A/cm2 in solders, the thermal gradient would increase from 74 K/cm to 901 K/cm at an ambient temperature of 25°C. The force from thermal gradient of 901 K/cm can nearly induce thermomigration by itself. With the increase in applied current, the thermal gradient is growing. It is proposed that thermomigration likely causes a serious reliability issue for Cu column based interconnects.

Keywords: Simulation, Cu-pillar bumps, Electromigration, Thermomigration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1838
1632 Three Dimensional Large Eddy Simulation of Blood Flow and Deformation in an Elastic Constricted Artery

Authors: Xi Gu, Guan Heng Yeoh, Victoria Timchenko

Abstract:

In the current work, a three-dimensional geometry of a 75% stenosed blood vessel is analyzed. Large eddy simulation (LES) with the help of a dynamic subgrid scale Smagorinsky model is applied to model the turbulent pulsatile flow. The geometry, the transmural pressure and the properties of the blood and the elastic boundary were based on clinical measurement data. For the flexible wall model, a thin solid region is constructed around the 75% stenosed blood vessel. The deformation of this solid region was modelled as a deforming boundary to reduce the computational cost of the solid model. Fluid-structure interaction is realized via a twoway coupling between the blood flow modelled via LES and the deforming vessel. The information of the flow pressure and the wall motion was exchanged continually during the cycle by an arbitrary Lagrangian-Eulerian method. The boundary condition of current time step depended on previous solutions. The fluctuation of the velocity in the post-stenotic region was analyzed in the study. The axial velocity at normalized position Z=0.5 shows a negative value near the vessel wall. The displacement of the elastic boundary was concerned in this study. In particular, the wall displacement at the systole and the diastole were compared. The negative displacement at the stenosis indicates a collapse at the maximum velocity and the deceleration phase.

Keywords: Large Eddy Simulation, Fluid Structural Interaction, Constricted Artery, Computational Fluid Dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2312
1631 Effect of a Multiple Stenosis on Blood Flow through a Tube

Authors: Vipin Kumar Verma, Praveen Saraswat

Abstract:

The development of double stenosis in an artery can have serious consequences and can disrupt the normal functioning of the circulatory system. It has been realized that various hydrodynamics effects (i.e. wall shear, pressure distribution etc.) play important role in the development of this disease. Generally in the literature, the cross-section of the artery is assumed to be uniform with a single stenosis. However, in real situation the multiple stenosis develops in series along the length of artery whose cross-section varies slowly. Therefore, the flow of blood is laminar through a small diameter artery with axisymmetric identical double stenosis in series.

Keywords: Wall shear, multiple stenosis, artery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
1630 Development of a Wall Climbing Robotic Ground Penetrating Radar System for Inspection of Vertical Concrete Structures

Authors: Md Omar Faruq Howlader, Tariq Pervez Sattar, Sandra Dudley

Abstract:

This paper describes the design process of a 200 MHz Ground Penetrating Radar (GPR) and a battery powered concrete vertical concrete surface climbing mobile robot. The key design feature is a miniaturized 200 MHz dipole antenna using additional radiating arms and procedure records a reduction of 40% in length compared to a conventional antenna. The antenna set is mounted in front of the robot using a servo mechanism for folding and unfolding purposes. The robot’s adhesion mechanism to climb the reinforced concrete wall is based on neodymium permanent magnets arranged in a unique combination to concentrate and maximize the magnetic flux to provide sufficient adhesion force for GPR installation. The experiments demonstrated the robot’s capability of climbing reinforced concrete wall carrying the attached prototype GPR system and perform floor-to-wall transition and vice versa. The developed GPR’s performance is validated by its capability of detecting and localizing an aluminium sheet and a reinforcement bar (rebar) of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The present robotic GPR system proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspectors.

Keywords: Climbing robot, dipole antenna, Ground Penetrating Radar (GPR), mobile robots, robotic GPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1629 Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity

Authors: R. K. Singh, P.K.Jain

Abstract:

Operating a device at high power and high frequency is a major problem because wall losses greatly reduce the efficiency of the device. In the present communication, authors analytically analyzed the dependence of ohmic/RF efficiency, the fraction of output power with respect to the total power generated, of gyrotron cavity structure on the conductivity of copper for the second harmonic TE0,6 mode. This study shows a rapid fall in the RF efficiency as the quality (conductivity) of copper degrades. Starting with an RF efficiency near 40% at the conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency decreases (upto 8%) as the copper quality degrades. Assuming conductivity half that of ideal copper the RF efficiency as a function of diffractive quality factor, Qdiff, has been studied. Here the RF efficiency decreases rapidly with increasing diffractive Q. Ohmic wall losses as a function of frequency for 460 GHz gyrotron cavity excited in TE0,6 mode has also been analyzed. For 460 GHz cavity, the extracted power is reduced to 32% of the generated power due to ohmic losses in the walls of the cavity.

Keywords: Diffractive quality factor, Gyrotron, Ohmic wall losses, Open cavity resonator, RF Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
1628 Theoretical Study of Flexible Edge Seals for Vacuum Glazing

Authors: Farid Arya, Trevor Hyde

Abstract:

The development of vacuum glazing represents a significant advancement in the area of low heat loss glazing systems with the potential to substantially reduce building heating and cooling loads. Vacuum glazing consists of two or more glass panes hermetically sealed together around the edge with a vacuum gap between the panes. To avoid the glass panes from collapsing and touching each other under the influence of atmospheric pressure an array of support pillars is provided between the glass panes. A high level of thermal insulation is achieved by evacuating the spaces between the glass panes to a very low pressure which greatly reduces conduction and convection within the space; therefore heat transfer through this kind of glazing is significantly lower when compared with conventional insulating glazing. However, vacuum glazing is subject to inherent stresses due to atmospheric pressure and temperature differentials which can lead to fracture of the glass panes and failure of the edge seal. A flexible edge seal has been proposed to minimise the impact of these issues. In this paper, vacuum glazing system with rigid and flexible edge seals is theoretically studied and their advantages and disadvantages are discussed.

Keywords: Flexible edge seal, stress, support pillar, vacuum glazing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
1627 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: Hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 743
1626 Analysis of Thermal Deformation of a Rough Slider and Its Asperities and Its Impact on Load Generation in Parallel Sliders

Authors: Prawal Sinha, Getachew Adamu

Abstract:

Heating is inevitable in any bearing operation. This leads to not only the thinning of the lubricant but also could lead to a thermal deformation of the bearing. The present work is an attempt to analyze the influence of thermal deformation on the thermohydrodynamic lubrication of infinitely long tilted pad slider rough bearings. As a consequence of heating the slider is deformed and is assumed to take a parabolic shape. Also the asperities expand leading to smaller effective film thickness. Two different types of surface roughness are considered: longitudinal roughness and transverse roughness. Christensen-s stochastic approach is used to derive the Reynolds-type equations. Density and viscosity are considered to be temperature dependent. The modified Reynolds equation, momentum equation, continuity equation and energy equation are decoupled and solved using finite difference method to yield various bearing characteristics. From the numerical simulations it is observed that the performance of the bearing is significantly affected by the thermal distortion of the slider and asperities and even the parallel sliders seem to carry some load.

Keywords: Thermal Deformation, Tilted pad slider bearing, longitudinal roughness, transverse roughness, load capacity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835
1625 Thermodynamic Analysis of a Novel Thermal Driven Refrigeration System

Authors: Linghui Zhu, Junjie Gu

Abstract:

Thermal-driven refrigeration systems have attracted increasing research and development interest in recent years. These systems do not cause ozone depletion and can reduce demand on electricity. The main objective of this work is to perform theoretical analyses of a thermal-driven refrigeration system using a new sorbent-sorptive pair as the working pair. The active component of sorbent is sodium thiocyanate (NaSCN). Ammonia (NH3) is chosen as sorptive. Based on the thermodynamic properties of the working solution, a mathematical model is introduced to analyze the system characteristics and performance. The results are used to compare with other thermal-driven refrigeration systems. It is shown that the advantages provided by this system over other absorption units include lower generator and evaporator temperatures, a higher coefficient of performance (COP). The COP is about 10 percent higher than the ones for the NH3-H2O system working at the same conditions.

Keywords: Absorption; Ammonia-Sodium thiocyanate, Exergy, coefficient of performance (COP)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
1624 Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

Authors: C. J. W. Habets, D. J. Peters, J. G. de Gijt, A. V. Metrikine, S. N. Jonkman

Abstract:

Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-displacement and finite element analysis are employed, calibrated with an experimental reference case that considers a typical anchored sheet pile wall. A reduction factor that accounts for deformation behaviour is determined for pseudo-static analysis. A model to apply traditional permanent displacement analysis on anchored sheet pile walls is proposed. Dynamic analysis is successfully carried out. From the research it is concluded that PBD evaluation can effectively be used for seismic analysis and design of this type of structure.

Keywords: Anchored sheet pile quay wall, simplified dynamic analysis, performance-based design, pseudo-static analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2330
1623 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: Aneurysm, CFD, wall shear stress, gravity, fluid dynamics, bifurcation artery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
1622 Monitorization of Junction Temperature Using a Thermal-Test-Device

Authors: B. Arzhanov, A. Correia, P. Delgado, J. Meireles

Abstract:

Due to the higher power loss levels in electronic components, the thermal design of PCBs (Printed Circuit Boards) of an assembled device becomes one of the most important quality factors in electronics. Nonetheless, some of leading causes of the microelectronic component failures are due to higher temperatures, the leakages or thermal-mechanical stress, which is a concern, is the reliability of microelectronic packages. This article presents an experimental approach to measure the junction temperature of exposed pad packages. The implemented solution is in a prototype phase, using a temperature-sensitive parameter (TSP) to measure temperature directly on the die, validating the numeric results provided by the Mechanical APDL (Ansys Parametric Design Language) under same conditions. The physical device-under-test is composed by a Thermal Test Chip (TTC-1002) and assembly in a QFN cavity, soldered to a test-board according to JEDEC Standards. Monitoring the voltage drop across a forward-biased diode, is an indirectly method but accurate to obtain the junction temperature of QFN component with an applied power range between 0,3W to 1.5W. The temperature distributions on the PCB test-board and QFN cavity surface were monitored by an infra-red thermal camera (Goby-384) controlled and images processed by the Xeneth software. The article provides a set-up to monitorize in real-time the junction temperature of ICs, namely devices with the exposed pad package (i.e. QFN). Presenting the PCB layout parameters that the designer should use to improve thermal performance, and evaluate the impact of voids in solder interface in the device junction temperature.

Keywords: Quad Flat No-Lead packages, exposed pads, junction temperature, thermal management, measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
1621 Field Emission Properties of Multi-wall Carbon Nanotube Field Emitters using Graphite Tip by Electroporetic Deposition

Authors: Gui Sob Byun, Yang Doo Lee, Kyong Soo Lee, Keun Soo Lee, Sun-Woo Park, Byeong Kwon Ju

Abstract:

We fabricated multi-walled carbon nanotube (MCNT) emitters by an electroporetic deposition (EPD) method using a MCNT-sodium dodecyl sulfate (SDS) suspension. MCNT films were prepared on graphite tip using EPD. We observe field emission properties of MCNT film after heat treatment. Consequently, The MCNT film on graphite tip exhibit good electron emission current.

Keywords: Field emission, Multi-wall carbon-nanotube (MCNT), Electrophoretic deposition (EPD)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1377
1620 Estimation of Thermal Conductivity of Nanofluids Using MD-Stochastic Simulation Based Approach

Authors: Sujoy Das, M. M. Ghosh

Abstract:

The thermal conductivity of a fluid can be significantly enhanced by dispersing nano-sized particles in it, and the resultant fluid is termed as "nanofluid". A theoretical model for estimating the thermal conductivity of a nanofluid has been proposed here. It is based on the mechanism that evenly dispersed nanoparticles within a nanofluid undergo Brownian motion in course of which the nanoparticles repeatedly collide with the heat source. During each collision a rapid heat transfer occurs owing to the solidsolid contact. Molecular dynamics (MD) simulation of the collision of nanoparticles with the heat source has shown that there is a pulselike pick up of heat by the nanoparticles within 20-100 ps, the extent of which depends not only on thermal conductivity of the nanoparticles, but also on the elastic and other physical properties of the nanoparticle. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding base fluid within 2-10 ms. The Brownian motion and associated temperature variation of the nanoparticles have been modeled by stochastic analysis. Repeated occurrence of these events by the suspended nanoparticles significantly contributes to the characteristic thermal conductivity of the nanofluids, which has been estimated by the present model for a ethylene glycol based nanofluid containing Cu-nanoparticles of size ranging from 8 to 20 nm, with Gaussian size distribution. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature.

Keywords: Brownian dynamics, Molecular dynamics, Nanofluid, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2230
1619 Thermal Cracking Approach Investigation to Improve Biodiesel Properties

Authors: Roghaieh Parvizsedghy, Seyyed Mojtaba Sadrameli

Abstract:

Biodiesel as an alternative diesel fuel is steadily gaining more attention and significance. However, there are some drawbacks while using biodiesel regarding its properties that requires it to be blended with petrol based diesel and/or additives to improve the fuel characteristics. This study analyses thermal cracking as an alternative technology to improve biodiesel characteristics in which, FAME based biodiesel produced by transesterification of castor oil is fed into a continuous thermal cracking reactor at temperatures range of 450-500°C and flowrate range of 20-40 g/hr. Experiments designed by response surface methodology and subsequent statistical studies show that temperature and feed flowrate significantly affect the products yield. Response surfaces were used to study the impact of temperature and flowrate on the product properties. After each experiment, the produced crude bio-oil was distilled and diesel cut was separated. As shorter chain molecules are produced through thermal cracking, the distillation curve of the diesel cut fitted more with petrol based diesel curve in comparison to the biodiesel. Moreover, the produced diesel cut properties adequately pose within property ranges defined by the related standard of petrol based diesel. Cold flow properties, high heating value as the main drawbacks of the biodiesel are improved by this technology. Thermal cracking decreases kinematic viscosity, Flash point and cetane number. 

Keywords: Biodiesel, castor oil, fuel properties, thermal cracking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3637
1618 Periodic Mixed Convection of a Nanofluid in a Cavity with Top Lid Sinusoidal Motion

Authors: Arash Karimipour, M. Afrand, M. M. Bazofti

Abstract:

The periodic mixed convection of a water-copper nanofluid inside a rectangular cavity with aspect ratio of 3 is investigated numerically. The temperature of the bottom wall of the cavity is assumed greater than the temperature of the top lid which oscillates horizontally with the velocity defined as u = u0 sin (ω t). The effects of Richardson number, Ri, and volume fraction of nanoparticles on the flow and thermal behavior of the nanofluid are investigated. Velocity and temperature profiles, streamlines and isotherms are presented. It is observed that when Ri < 1, heat transfer rate is much greater than when Ri > 1. The higher value of Ri corresponds to a lower value of the amplitude of the oscillation of Num in the steady periodic state. Moreover, increasing the volume fraction of the nanoparticles increases the heat transfer rate.

Keywords: Nanofluid, Top lid oscillation, Mixed convection, Volume fraction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
1617 Effect of Non-Newtonian Behaviour of Blood on Pulsatile Flows in Stenotic Arteries

Authors: Somkid Amornsamankul, Benchawan Wiwatanapataphee, Yong Hong Wu, Yongwimon Lenbury

Abstract:

In this paper, we study the pulsatile flow of blood through stenotic arteries. The inner layer of arterial walls is modeled as a porous medium and human blood is assumed as an incompressible fluid. A numerical algorithm based on the finite element method is developed to simulate the blood flow through both the lumen region and the porous wall. The algorithm is then applied to study the flow behaviour and to investigate the significance of the non-Newtonian effect.

Keywords: Stenotic artery, finite element, porous arterial wall, non-Newtonian model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2172
1616 Enhancement of Impingement Heat Transfer on a Flat Plate with Ribs

Authors: M. Kito, M. Takezaki, T. Shakouchi, K. Tsujimoto, T. Ando

Abstract:

Impinging jets are widely used in industrial cooling systems for their high heat transfer characteristics at stagnation points. However, the heat transfer characteristics are low in the downstream direction. In order to improve the heat transfer coefficient further downstream, investigations introducing ribs on jet-cooled flat plates have been conducted. Most studies regarding the heat-transfer enhancement using a rib-roughened wall have dealt with the rib pitch. In this paper, we focused on the rib spacing and demonstrated that the rib spacing must be more than 6 times the nozzle width to improve heat transfer at Reynolds number Re=5.0×103 because it is necessary to have enough space to allow reattachment of flow behind the first rib.

Keywords: Forced convection, heat transfer, impinging jet cooling, rib roughened wall

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2411
1615 Laboratory Scale Extraction of Sugar Cane using High Electric Field Pulses

Authors: M. N. Eshtiaghi, N. Yoswathana

Abstract:

The aim of this study was to extract sugar from sugarcane using high electric field pulse (HELP) as a non-thermal cell permeabilization method. The result of this study showed that it is possible to permeablize sugar cane cells using HELP at very short times (less than 10 sec.) and at room temperature. Increasing the field strength (from 0.5kV/cm to 2kV/cm) and pulse number (1 to 12) led to increasing the permeabilization of sugar cane cells. The energy consumption during HELP treatment of sugar cane (2.4 kJ/kg) was about 100 times less compared to thermal cell disintegration at 85 <=C (about 271.7 kJ/kg). In addition, it was possible to extract sugar cane at a moderate temperature (45 <=C) using HELP pretreatment. With combination of HELP pretreatment followed by thermal extraction at 75 <=C, extraction resulted in up to 3% more sugar (on the basis of total extractable sugar) compared to samples without HELP pretreatment.

Keywords: Cell permeabilization, High electric field pulses, Non-thermal processing, Sugar cane extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2715
1614 Seismic Response of Hill Side Step-back RC Framed Buildings with Shear Wall and Bracing System

Authors: Birendra Kumar Bohara

Abstract:

The hillside building shows different behavior as a flat ground building in lateral loading. Especially the step back building in the sloping ground has different seismic behavior. The hillside building 3D model having different types of structural elements is introduced and analyzed with a seismic effect. The structural elements such as the shear wall, steel, and concrete bracing are used to resist the earthquake load and compared with without using any shear wall and bracing system. The X, inverted V, and diagonal bracing are used. The total nine models are prepared in ETABs finite element coding software. The linear dynamic analysis is the response spectrum analysis (RSA) carried out to study dynamic behaviors in means of top story displacement, story drift, fundamental time period, story stiffness, and story shear. The results are analyzed and made some decisions based on seismic performance. It is also observed that it is better to use the X bracing system for lateral load resisting elements.

Keywords: Step-back buildings, bracing system, hill side buildings, response spectrum method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 452
1613 Plasterwork Ornamentation Finds of Hoşap Castle Archeological Excavation (2007-2015)

Authors: M. Top, H. Telli

Abstract:

Plaster material has been a preferred material especially in the Middle East geography in terms of economy, easy process and thermal insulation since very old times. However, due to the unstable nature of the material, very little has been reached today. For this reason, both finds and studies about stucco ornamentation are very few. In this study, the excavated plasterwork finds used in the architectural ornamentation in the Hosap Castle (Van/Turkey) were considered worth examining since they are rare examples. The stucco relief finds that were found in the castle is discussed. The finds of engraved artifacts on the plasterworks were not addressed. Only the pieces found in Area II and Area III (harem) and surrounding during the cleaning and excavation work carried out at Hosap Kalesi between 2007-2015, will be discussed. This is a general assessment about the finds. It is unknown where many of the pieces found. For this reason, only general appraisal was able to done. Most of the parts are made of mold technique. The motifs on the fragments are similar to the motifs of Ottoman period tiles. Parallel to the settlement history of the castle, thought that these plaster pieces belong to the 16th-17th centuries.

Keywords: Stucco decoration, Eastern Anatolia, Ottoman motifs, ornamentation, plasterwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
1612 Influence of Thermal Cycle on Temperature Dependent Process Parameters Involved in GTA Welded High Carbon Steel Joints

Authors: J. Dutta, Narendranath S.

Abstract:

In this research article a comprehensive investigation has been carried out to determine the effect of thermal cycle on temperature dependent process parameters developed during gas tungsten arc (GTA) welding of high carbon (AISI 1090) steel butt joints. An experiment based thermal analysis has been performed to obtain the thermal history. We have focused on different thermophysical properties such as thermal conductivity, heat transfer coefficient and cooling rate. Angular torch model has been utilized to find out the surface heat flux and its variation along the fusion zone as well as along the longitudinal direction from fusion boundary. After welding and formation of weld pool, heat transfer coefficient varies rapidly in the vicinity of molten weld bead and heat affected zone. To evaluate the heat transfer coefficient near the fusion line and near the rear end of the plate (low temperature region), established correlation has been implemented and has been compared with empirical correlation which is noted as coupled convective and radiation heat transfer coefficient. Change in thermal conductivity has been visualized by analytical model of moving point heat source. Rate of cooling has been estimated by using 2-dimensional mathematical expression of cooling rate and it has shown good agreement with experimental temperature cycle. Thermophysical properties have been varied randomly within 0 -10s time span.

Keywords: Thermal history, Gas tungsten arc welding, Butt joint, High carbon steel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2734
1611 How Do You Blow off Steam - The Impact of Therapeutic Catharsis Seeking, Self-Construal, and Social Capital in Gaming Context

Authors: Hye Rim Lee, Eui Jun Jeong, Joo Woo Kim

Abstract:

This study will examine how the therapeutic factors (therapeutic catharsis-seeking and game-efficacy of the game player) and self-construal factors (independent and interdependent self-construal of the game player) as well as social capital factors (bonding and bridging social capital of the game player) affect aggression in the game. Results show that both therapeutic catharsis-seeking and game self-efficacy are particularly important to the players since they cause the game players’ aggressive tendencies to be greatly diminished. Independent self-construal reduces the level of the players’ aggression. Interestingly enough, the bonding social capital enhances the level of the players’ aggression, while individuals with bridging social capital did not show any significant effects. The results and implications will be discussed herein.

Keywords: Aggression catharsis, therapeutic catharsis seeking, game self-efficacy, self-construal, social capital.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462