Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 32794
Ohmic Quality Factor and Efficiency Estimation for a Gyrotron Cavity

Authors: R. K. Singh, P.K.Jain

Abstract:

Operating a device at high power and high frequency is a major problem because wall losses greatly reduce the efficiency of the device. In the present communication, authors analytically analyzed the dependence of ohmic/RF efficiency, the fraction of output power with respect to the total power generated, of gyrotron cavity structure on the conductivity of copper for the second harmonic TE0,6 mode. This study shows a rapid fall in the RF efficiency as the quality (conductivity) of copper degrades. Starting with an RF efficiency near 40% at the conductivity of ideal copper (5.8 x 107 S/m), the RF efficiency decreases (upto 8%) as the copper quality degrades. Assuming conductivity half that of ideal copper the RF efficiency as a function of diffractive quality factor, Qdiff, has been studied. Here the RF efficiency decreases rapidly with increasing diffractive Q. Ohmic wall losses as a function of frequency for 460 GHz gyrotron cavity excited in TE0,6 mode has also been analyzed. For 460 GHz cavity, the extracted power is reduced to 32% of the generated power due to ohmic losses in the walls of the cavity.

Keywords: Diffractive quality factor, Gyrotron, Ohmic wall losses, Open cavity resonator, RF Efficiency.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1085143

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2192

References:


[1] H. Hetrz, Electric Waves, New York, Macmillan, 1893.
[2] K. L. Felch, B. G. Danly, H. R. Jory, K. E. Kreischer, W. Lawson, B. Levush, and R. J. Temkin, "Characteristics and application of fast-wave gyro-devices," in Proc. of the IEEE, vol. 87, no. 5, pp. 752-781, 1999.
[3] D. T. Emerson, "The work of Jagdis Chandra Bose: 100 years of millimeter-wave research," IEEE Trans. on Microwave Theory and Techniques, vol. 45, no. 12, pp. 2267-2273, Dec. 1997.
[4] V. L.Granatstein and I. Alexeff, High-Power Microwave Sources, Artech House, Boston, 1987.
[5] R. E. Collin, Foundations for Microwave Engineering, Second Edition, IEEE Press, Piscataway, NJ 1990.
[6] G. Benford and J. Swegle, High Power Microwaves, Artech House, Boston, 1992.
[7] A. V. Gaponov-Grekhov, V. L. Granatstein, Applications of High-Power Microwaves, Artech House, Boston, 1994.
[8] B. N. Basu, Electromagnetic Theory and Applications in Beam-Wave Electronics, Singapore: World Scientific, 1996.
[9] C. J. Edgcombe, Gyrotron Oscillator -Their Principles and Practice, Taylor & Francis, London, 1993.
[10] T. C. Luce, "Applications of high-power millimeter waves in fusion energy research," IEEE Trans. Plasma Sc., vol. PS-30, no. 3, pp. 734- 754, June 2002.
[11] V. L. Granastein, B. Levush, B. G. Danly, and R. K. Parker, "A quarter century of gyrotron research and development," IEEE Trans. Plasma Sci., vol. 25, pp. 1322-1335, 1997.
[12] M. Blank, B. G. Danly, and B. Levush, "Circuit design of a wideband W-band gyroklystron amplifier for radar applications, IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 426-432, 1998.
[13] M. Blank, B. G. Danly, B. Levush, "Experimental demonstration of a Wband (94GHz) gyrotwystron amplifier," IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 405-411, 1999.
[14] W. L. Menninger, B. G. Danly and R. J. Temkin, "Multimegawatt relativistic harmonic gyrotron traveling-wave tube amplifier experiments, IEEE Trans. on Plasma Sci., vol. 24, no. 3, pp. 687-699, 1996.
[15] V. Erckmann et. Al., "ECRH and ECCD with high power gyrotrons at the stellarators W7-AS and W7-X," IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 538-546, 1999.
[16] G. Link, L. Feher, M. Thumm, H. Ritzhaupt-Kleissl, R. Bohome, and A. Weisenburger, "Sintering of advanced ceramics using a 30GHz, 10kW, CW industrial gyrotron," IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 547-554, 1999.
[17] L. R. Becerra, G. J. Gerfen, R. J. Temkin, D. J. Single, and R. J. Griffin, "Dynamic nuclear polarization with a cyclotron resonance maser at 5T," Phys. Rev. Lett., vol. 71, pp. 3561-3564, 1993.
[18] G. Link, L. Feher, M. Thumm, H. Ritzhaupt-Kleissl, R. Bohome, and A. Weisenburger, "Sintering of advanced ceramics using a 30GHz, 10kW, CW industrial gyrotron," IEEE Trans. Plasma Sci., vol. 27, no. 2, pp. 547-554, 1999.
[19] R. M. Phillips and D. W. Sprehn, "High-power klystrons for the next linear collider," Proc. IEEE, vol. 87, no. 5, pp. 738-751, 1999.
[20] V. L. Granatstein and W. Lawson, "Gyro-amplifiers as candidate RF drivers for TeV linear colliders," IEEE Trans. Plasma Sci., vol. 24, no. 3, pp. 648-665, June 1996.
[21] G. S. Nusinovich, M. E. Read, O. Dumbrajs, and K. E. Kreischer, " Theory of gyrotrons with coaxial resonators," IEEE Trans. Electron Devices, vol. 41, pp. 433-438, 1994.
[22] V. A. Flyagin, A. V. Gaponov, M. I. Petelin, and V. K. Yulpatov, "The gyrotron," IEEE Trans. Microwave Theory Tech., vol. 25, pp. 514-521, 1977.
[23] T. Kimura, Experimental Study of a 1 MW, 170 GHz Gyrotron Oscillator, Ph.D. Thesis submitted to the Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA, September 1997.
[24] A. V. Gaponov, V. A. Flyagin, A. L. Goldenberg, G. S. Nusinovich, S. E. Tsimring, V. G. Usov, and S. N. Vlasov, "Powerful millimeter-wave gyrotrons," Int. J. Electronics, vol. 51, pp. 277-283, 1981.
[25] V.L. Bratman, N.S. Ginzburg, G.S. Nusinovich, M.I. Petelin and P.S. Strelkov, "Relativistic gyrotrons and cyclotron autoresonance masers, Int. J. Electron., vol 51, no. 4, pp. 541-567, 1981.
[26] K. J. Kim, M. E. Read, "Design considerations for a megawatt CW gyrotrons," Int. J. Electronics, vol. 51, pp. 427-432, 1981.
[27] R. A. Correa, B. Levush, and T. M. Antonsen, "High efficiency cavity design of a 170 GHz gyrotron for fusion applications," Phys. Plasmas, vol. 4, No. 1, pp. 209-216, Jan. 1997.
[28] K. E. Kreischer, T. Kimura, B. G. Danly, and R. J. Temkin, "High power operation of a 170 GHz megawatt gyrotron," Phys. Plasmas, vol. 4, no. 5, pp. 1907-1914, 1997.
[29] B. Piosczyk, O. Braz, G. Dammertz, C. T. Iatrou, S. Illy, M. Kuntze, G. Michel, and M. Thumm, "165GHz, 1.5MW-coaxial cavity gyrotron with depressed collector," IEEE Trans. on Plasma Sci., vol. 27, no. 2, pp. 484-489, 1999.
[30] M. V. Kartikeyan, E. Borie, and M. Thumm, Gyrotrons - High Power Microwave & Millimeter Wave Technology, Springer: Berlin, 2004.
[31] G. G. Denisov, V. L. Bratman, A. D. R. Phelps, and S. V. Samsonov, "Gyro-TWT with a helical operating waveguide: New possibilities to enhance efficiency and frequency bandwidth," IEEE Trans. Plasma Sci., vol. 26, no. 3, pp. 508-518, 1998.