Search results for: variance analysis
8424 Magnetic Fluid Based Squeeze Film in Rough Rotating Curved Porous Annular Plates: Deformation Effect
Authors: M. E. Shimpi, G. M. Deheri
Abstract:
This article aims to investigate the performance of a magnetic fluid based squeeze film between rotating transversely rough curved porous annular plates incorporating the effect of elastic deformation. The associated stochastically averaged Reynolds type equation is solved to obtain the pressure distribution leading to the calculation of the load carrying capacity. The results suggest that the transverse roughness of the bearing surfaces affects the performance adversely although the bearing systems register a relatively improved performance due to the magnetization. The deformation causes reduced the load carrying capacity while the curvature parameters tend to nominally increase the load carrying capacity. Besides, the adverse effect of porosity, deformation and standard deviation can be minimized to some extent by the positive effect of the magnetization and the curvature parameters in the case of negatively skewed roughness by suitably choosing the rotational inertia and the aspect ratio, which becomes significant when negative variance occurs.
Keywords: Annular plates curved rough surface, deformation, load carrying capacity, rotational inertia, magnetic fluid, squeeze film.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18248423 Recycling-Oriented Product Assessment during Design Process with Usage of Agent Technology
Authors: Ewa Dostatni, Jacek Diakun, Damian Grajewski, Radosław Wichniarek, Anna Karwasz
Abstract:
In the paper the method of product analysis from recycling point of view has been described. The analysis bases on set of measures that assess a product from the point of view of final stages of its lifecycle. It was assumed that such analysis will be performed at the design phase – in order to conduct such analysis the computer system that aids the designer during the design process has been developed. The structure of the computer tool, based on agent technology, and example results has been also included in the paper.Keywords: Agent technology, PLM, design for environment, ecodesign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16748422 Interconnect Analysis of a Novel Multiplexer Based Full-Adder Cell for Power and Propagation Delay Optimizations
Authors: G.Ramana Murthy, C.Senthilpari, P.Velrajkumar, Lim Tien Sze
Abstract:
The proposed multiplexer-based novel 1-bit full adder cell is schematized by using DSCH2 and its layout is generated by using microwind VLSI CAD tool. The adder cell layout interconnect analysis is performed by using BSIM4 layout analyzer. The adder circuit is compared with other six existing adder circuits for parametric analysis. The proposed adder cell gives better performance than the other existing six adder circuits in terms of power, propagation delay and PDP. The proposed adder circuit is further analyzed for interconnect analysis, which gives better performance than other adder circuits in terms of layout thickness, width and height.Keywords: Full Adder, Interconnect Analysis, Low-Power, Multiplexer, Propagation Delay, Parametric Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15508421 Mixtures of Monotone Networks for Prediction
Authors: Marina Velikova, Hennie Daniels, Ad Feelders
Abstract:
In many data mining applications, it is a priori known that the target function should satisfy certain constraints imposed by, for example, economic theory or a human-decision maker. In this paper we consider partially monotone prediction problems, where the target variable depends monotonically on some of the input variables but not on all. We propose a novel method to construct prediction models, where monotone dependences with respect to some of the input variables are preserved by virtue of construction. Our method belongs to the class of mixture models. The basic idea is to convolute monotone neural networks with weight (kernel) functions to make predictions. By using simulation and real case studies, we demonstrate the application of our method. To obtain sound assessment for the performance of our approach, we use standard neural networks with weight decay and partially monotone linear models as benchmark methods for comparison. The results show that our approach outperforms partially monotone linear models in terms of accuracy. Furthermore, the incorporation of partial monotonicity constraints not only leads to models that are in accordance with the decision maker's expertise, but also reduces considerably the model variance in comparison to standard neural networks with weight decay.Keywords: mixture models, monotone neural networks, partially monotone models, partially monotone problems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12468420 Application Potential of Selected Tools in Context of Critical Infrastructure Protection and Risk Analysis
Authors: Hromada Martin
Abstract:
Risk analysis is considered as a fundamental aspect relevant for ensuring the level of critical infrastructure protection, where the critical infrastructure is seen as system, asset or its part which is important for maintaining the vital societal functions. Article actually discusses and analyzes the potential application of selected tools of information support for the implementation and within the framework of risk analysis and critical infrastructure protection. Use of the information in relation to their risk analysis can be viewed as a form of simplifying the analytical process. It is clear that these instruments (information support) for these purposes are countless, so they were selected representatives who have already been applied in the selected area of critical infrastructure, or they can be used. All presented fact were the basis for critical infrastructure resilience evaluation methodology development.
Keywords: Critical infrastructure, Protection, Resilience, Risk Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16178419 Towards Development of Solution for Business Process-Oriented Data Analysis
Authors: M. Klimavicius
Abstract:
This paper proposes a modeling methodology for the development of data analysis solution. The Author introduce the approach to address data warehousing issues at the at enterprise level. The methodology covers the process of the requirements eliciting and analysis stage as well as initial design of data warehouse. The paper reviews extended business process model, which satisfy the needs of data warehouse development. The Author considers that the use of business process models is necessary, as it reflects both enterprise information systems and business functions, which are important for data analysis. The Described approach divides development into three steps with different detailed elaboration of models. The Described approach gives possibility to gather requirements and display them to business users in easy manner.Keywords: Data warehouse, data analysis, business processmanagement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13928418 An Approach to Concerns and Aspects Mining for Web Applications
Authors: Carlo Bellettini, Alessandro Marchetto, Andrea Trentini
Abstract:
Web applications have become very complex and crucial, especially when combined with areas such as CRM (Customer Relationship Management) and BPR (Business Process Reengineering), the scientific community has focused attention to Web applications design, development, analysis, and testing, by studying and proposing methodologies and tools. This paper proposes an approach to automatic multi-dimensional concern mining for Web Applications, based on concepts analysis, impact analysis, and token-based concern identification. This approach lets the user to analyse and traverse Web software relevant to a particular concern (concept, goal, purpose, etc.) via multi-dimensional separation of concerns, to document, understand and test Web applications. This technique was developed in the context of WAAT (Web Applications Analysis and Testing) project. A semi-automatic tool to support this technique is currently under development.Keywords: Aspect Mining, Concepts Analysis, Concerns Mining, Multi-Dimensional Separation of Concerns, Impact Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15138417 Critical Analysis of Heat Exchanger Cycle for its Maintainability Using Failure Modes and Effect Analysis and Pareto Analysis
Authors: Sayali Vyas, Atharva Desai, Shreyas Badave, Apurv Kulkarni, B. Rajiv
Abstract:
The Failure Modes and Effect Analysis (FMEA) is an efficient evaluation technique to identify potential failures in products, processes, and services. FMEA is designed to identify and prioritize failure modes. It proves to be a useful method for identifying and correcting possible failures at its earliest possible level so that one can avoid consequences of poor performance. In this paper, FMEA tool is used in detection of failures of various components of heat exchanger cycle and to identify critical failures of the components which may hamper the system’s performance. Further, a detailed Pareto analysis is done to find out the most critical components of the cycle, the causes of its failures, and possible recommended actions. This paper can be used as a checklist which will help in maintainability of the system.
Keywords: FMEA, heat exchanger cycle, Ishikawa diagram, Pareto analysis, risk priority number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16528416 Optimal Model Order Selection for Transient Error Autoregressive Moving Average (TERA) MRI Reconstruction Method
Authors: Abiodun M. Aibinu, Athaur Rahman Najeeb, Momoh J. E. Salami, Amir A. Shafie
Abstract:
An alternative approach to the use of Discrete Fourier Transform (DFT) for Magnetic Resonance Imaging (MRI) reconstruction is the use of parametric modeling technique. This method is suitable for problems in which the image can be modeled by explicit known source functions with a few adjustable parameters. Despite the success reported in the use of modeling technique as an alternative MRI reconstruction technique, two important problems constitutes challenges to the applicability of this method, these are estimation of Model order and model coefficient determination. In this paper, five of the suggested method of evaluating the model order have been evaluated, these are: The Final Prediction Error (FPE), Akaike Information Criterion (AIC), Residual Variance (RV), Minimum Description Length (MDL) and Hannan and Quinn (HNQ) criterion. These criteria were evaluated on MRI data sets based on the method of Transient Error Reconstruction Algorithm (TERA). The result for each criterion is compared to result obtained by the use of a fixed order technique and three measures of similarity were evaluated. Result obtained shows that the use of MDL gives the highest measure of similarity to that use by a fixed order technique.Keywords: Autoregressive Moving Average (ARMA), MagneticResonance Imaging (MRI), Parametric modeling, Transient Error.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16158415 Forecasting the Influences of Information and Communication Technology on the Structural Changes of Japanese Industrial Sectors: A Study Using Statistical Analysis
Authors: Ubaidillah Zuhdi, Shunsuke Mori, Kazuhisa Kamegai
Abstract:
The purpose of this study is to forecast the influences of information and communication technology (ICT) on the structural changes of Japanese economies. In this study, input-output (IO) and statistical approaches are used as analysis instruments. More specifically, this study employs Leontief IO coefficients and constrained multivariate regression (CMR) model in order to achieve the purpose. The periods of initial and forecast in this study are 2005 and 2015, respectively. In this study, ICT is represented by ICT capital stocks. This study conducts two levels of analysis, namely macro and micro. The results of macro level analysis show that the dynamics of Japanese economies on the forecast period, relative to the initial period, are not so high. We focus on (1) commerce, (2) business services and office supplies, and (3) personal services sectors when conducting the analysis of the micro level. Further, we analyze its specific IO coefficients when doing this analysis. The results of the analysis explain that ICT gives a strong influence on the changes of these coefficients from initial to forecast periods.
Keywords: Forecast, ICT, Structural changes, Japanese economies.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16748414 Comparison between Pushover Analysis Techniques and Validation of the Simplified Modal Pushover Analysis
Authors: N. F. Hanna, A. M. Haridy
Abstract:
One of the main drawbacks of the Modal Pushover Analysis (MPA) is the need to perform nonlinear time-history analysis, which complicates the analysis method and time. A simplified version of the MPA has been proposed based on the concept of the inelastic deformation ratio. Furthermore, the effect of the higher modes of vibration is considered by assuming linearly-elastic responses, which enables the use of standard elastic response spectrum analysis. In this thesis, the simplified MPA (SMPA) method is applied to determine the target global drift and the inter-story drifts of steel frame building. The effect of the higher vibration modes is considered within the framework of the SMPA. A comprehensive survey about the inelastic deformation ratio is presented. After that, a suitable expression from literature is selected for the inelastic deformation ratio and then implemented in the SMPA. The estimated seismic demands using the SMPA, such as target drift, base shear, and the inter-story drifts, are compared with the seismic responses determined by applying the standard MPA. The accuracy of the estimated seismic demands is validated by comparing with the results obtained by the nonlinear time-history analysis using real earthquake records.
Keywords: Modal analysis, pushover analysis, seismic performance, target displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16228413 A Proposed Approach for Emotion Lexicon Enrichment
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14568412 Failure Analysis and Fatigue Life Estimation of a Shaft of a Rotary Draw Bending Machine
Authors: B. Engel, Sara Salman Hassan Al-Maeeni
Abstract:
Human consumption of the Earth's resources increases the need for a sustainable development as an important ecological, social, and economic theme. Re-engineering of machine tools, in terms of design and failure analysis, is defined as steps performed on an obsolete machine to return it to a new machine with the warranty that matches the customer requirement. To understand the future fatigue behavior of the used machine components, it is important to investigate the possible causes of machine parts failure through design, surface, and material inspections. In this study, the failure modes of the shaft of the rotary draw bending machine are inspected. Furthermore, stress and deflection analysis of the shaft subjected to combined torsion and bending loads are carried out by an analytical method and compared with a finite element analysis method. The theoretical fatigue strength, correction factors, and fatigue life sustained by the shaft before damaged are estimated by creating a stress-cycle (S-N) diagram. In conclusion, it is seen that the shaft can work in the second life, but it needs some surface treatments to increase the reliability and fatigue life.
Keywords: Failure analysis, fatigue life, FEM analysis, shaft, stress analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46188411 Haptics Enabled of ine AFM Image Analysis
Authors: Bhatti A., Nahavandi S., Hossny M.
Abstract:
Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.
Keywords: Haptics, AFM, force feedback, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15728410 Novelist Calls Out Poemist: A Psycholinguistic and Contrastive Analysis of the Errors in Turkish EFL Learners- Interlanguage
Authors: Mehmet Ozcan
Abstract:
This study is designed to investigate errors emerged in written texts produced by 30 Turkish EFL learners with an explanatory, and thus, qualitative perspective. Erroneous language elements were identified by the researcher first and then their grammaticality and intelligibility were checked by five native speakers of English. The analysis of the data showed that it is difficult to claim that an error stems from only one single factor since different features of an error are triggered by different factors. Our findings revealed two different types of errors: those which stem from the interference of L1 with L2 and those which are developmental ones. The former type contains more global errors whereas the errors in latter type are more intelligible.
Keywords: Contrastive analysis, Error analysis, Language acquisition, Language transfer, Turkish
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21068409 Speaker Independent Quranic Recognizer Basedon Maximum Likelihood Linear Regression
Authors: Ehab Mourtaga, Ahmad Sharieh, Mousa Abdallah
Abstract:
An automatic speech recognition system for the formal Arabic language is needed. The Quran is the most formal spoken book in Arabic, it is spoken all over the world. In this research, an automatic speech recognizer for Quranic based speakerindependent was developed and tested. The system was developed based on the tri-phone Hidden Markov Model and Maximum Likelihood Linear Regression (MLLR). The MLLR computes a set of transformations which reduces the mismatch between an initial model set and the adaptation data. It uses the regression class tree, as well as, estimates a set of linear transformations for the mean and variance parameters of a Gaussian mixture HMM system. The 30th Chapter of the Quran, with five of the most famous readers of the Quran, was used for the training and testing of the data. The chapter includes about 2000 distinct words. The advantages of using the Quranic verses as the database in this developed recognizer are the uniqueness of the words and the high level of orderliness between verses. The level of accuracy from the tested data ranged 68 to 85%.Keywords: Hidden Markov Model (HMM), MaximumLikelihood Linear Regression (MLLR), Quran, Regression ClassTree, Speech Recognition, Speaker-independent.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19158408 Comparison of Parameterization Methods in Recognizing Spoken Arabic Digits
Authors: Ali Ganoun
Abstract:
This paper proposes evaluation of sound parameterization methods in recognizing some spoken Arabic words, namely digits from zero to nine. Each isolated spoken word is represented by a single template based on a specific recognition feature, and the recognition is based on the Euclidean distance from those templates. The performance analysis of recognition is based on four parameterization features: the Burg Spectrum Analysis, the Walsh Spectrum Analysis, the Thomson Multitaper Spectrum Analysis and the Mel Frequency Cepstral Coefficients (MFCC) features. The main aim of this paper was to compare, analyze, and discuss the outcomes of spoken Arabic digits recognition systems based on the selected recognition features. The results acqired confirm that the use of MFCC features is a very promising method in recognizing Spoken Arabic digits.
Keywords: Speech Recognition, Spectrum Analysis, Burg Spectrum, Walsh Spectrum Analysis, Thomson Multitaper Spectrum, MFCC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15938407 Optimal Portfolio Selection in a DC Pension with Multiple Contributors and the Impact of Stochastic Additional Voluntary Contribution on the Optimal Investment Strategy
Authors: Edikan E. Akpanibah, Okwigbedi Oghen’Oro
Abstract:
In this paper, we studied the optimal portfolio selection in a defined contribution (DC) pension scheme with multiple contributors under constant elasticity of variance (CEV) model and the impact of stochastic additional voluntary contribution on the investment strategies. We assume that the voluntary contributions are stochastic and also consider investments in a risk free asset and a risky asset to increase the expected returns of the contributing members. We derived a stochastic differential equation which consists of the members’ monthly contributions and the invested fund and obtained an optimized problem with the help of Hamilton Jacobi Bellman equation. Furthermore, we find an explicit solution for the optimal investment strategy with stochastic voluntary contribution using power transformation and change of variables method and the corresponding optimal fund size was obtained. We discussed the impact of the voluntary contribution on the optimal investment strategy with numerical simulations and observed that the voluntary contribution reduces the optimal investment strategy of the risky asset.
Keywords: DC pension fund, Hamilton-Jacobi-Bellman, optimal investment strategies, power transformation method, stochastic, voluntary contribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8328406 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment
Authors: Khaled Harrar, Rachid Jennane
Abstract:
The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an agematched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.Keywords: Osteoporosis, fractal dimension, fractal signature, bone mineral density.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23288405 The Effect of Computer-Mediated vs. Face-to-Face Instruction on L2 Pragmatics: A Meta-Analysis
Authors: Marziyeh Yousefi, Hossein Nassaji
Abstract:
This paper reports the results of a meta-analysis of studies on the effects of instruction mode on learning second language pragmatics during the last decade (from 2006 to 2016). After establishing related inclusion/ exclusion criteria, 39 published studies were retrieved and included in the present meta-analysis. Studies were later coded for face-to-face and computer-assisted mode of instruction. Statistical procedures were applied to obtain effect sizes. It was found that Computer-Assisted-Language-Learning studies generated larger effects than Face-to-Face instruction.Keywords: Meta-analysis, effect size, pragmatics, computer-assisted language learnin, face-to-face instruction, comprehensive meta-analysis software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7808404 Haptics Enabled Offline AFM Image Analysis
Authors: Bhatti A., Nahavandi S., Hossny M.
Abstract:
Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.Keywords: Haptics, AFM, force feedback, image analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15078403 Morphological Analysis of English L1-Persian L2 Adult Learners’ Interlanguage: From the Perspective of SLA Variation
Authors: Maassoumeh Bemani Naeini
Abstract:
Studies on interlanguage have long been engaged in describing the phenomenon of variation in SLA. Pursuing the same goal and particularly addressing the role of linguistic features, this study describes the use of Persian morphology in the interlanguage of two adult English-speaking learners of Persian L2. Taking the general approach of a combination of contrastive analysis, error analysis and interlanguage analysis, this study focuses on the identification and prediction of some possible instances of transfer from English L1 to Persian L2 across six elicitation tasks aiming to investigate whether any of contextual features may variably influence the learners’ order of morpheme accuracy in the areas of copula, possessives, articles, demonstratives, plural form, personal pronouns, and genitive cases. Results describe the existence of task variation in the interlanguage system of Persian L2 learners.Keywords: English L1, Interlanguage Analysis, Persian L2, SLA variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13128402 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: Model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10028401 Optimization of Process Parameters of Pressure Die Casting using Taguchi Methodology
Authors: Satish Kumar, Arun Kumar Gupta, Pankaj Chandna
Abstract:
The present work analyses different parameters of pressure die casting to minimize the casting defects. Pressure diecasting is usually applied for casting of aluminium alloys. Good surface finish with required tolerances and dimensional accuracy can be achieved by optimization of controllable process parameters such as solidification time, molten temperature, filling time, injection pressure and plunger velocity. Moreover, by selection of optimum process parameters the pressure die casting defects such as porosity, insufficient spread of molten material, flash etc. are also minimized. Therefore, a pressure die casting component, carburetor housing of aluminium alloy (Al2Si2O5) has been considered. The effects of selected process parameters on casting defects and subsequent setting of parameters with the levels have been accomplished by Taguchi-s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L18 orthogonal array. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the percent contribution of different process parameters. Confidence interval has also been estimated for 95% consistency level and three conformational experiments have been performed to validate the optimum level of different parameters. Overall 2.352% reduction in defects has been observed with the help of suggested optimum process parameters.
Keywords: Aluminium Casting, Pressure Die Casting, Taguchi Methodology, Design of Experiments
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73358400 Analysis of Heart Beat Dynamics through Singularity Spectrum
Authors: Harish Kumar, Hussein Yahia, Oriol Pont, Michel Haissaguerre, Nicolas Derval, Meleze Hocini
Abstract:
The analysis to detect arrhythmias and life-threatening conditions are highly essential in today world and this analysis can be accomplished by advanced non-linear processing methods for accurate analysis of the complex signals of heartbeat dynamics. In this perspective, recent developments in the field of multiscale information content have lead to the Microcanonical Multiscale Formalism (MMF). We show that such framework provides several signal analysis techniques that are especially adapted to the study of heartbeat dynamics. In this paper, we just show first hand results of whether the considered heartbeat dynamics signals have the multiscale properties by computing local preticability exponents (LPEs) and the Unpredictable Points Manifold (UPM), and thereby computing the singularity spectrum.Keywords: Microcanonical Multiscale Formalism (MMF), UnpredictablePoints Manifold (UPM), Heartbeat Dynamics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15188399 Design of a Fuzzy Feed-forward Controller for Monitor HAGC System of Cold Rolling Mill
Authors: S. Khosravi, A. Afshar, F. Barazandeh
Abstract:
In this study we propose a novel monitor hydraulic automatic gauge control (HAGC) system based on fuzzy feedforward controller. This is used in the development of cold rolling mill automation system to improve the quality of cold strip. According to features/ properties of entry steel strip like its average yield stress, width of strip, and desired exit thickness, this controller realizes the compensation for the exit thickness error. The traditional methods of adjusting the roller position, can-t tolerate the variance in the entry steel strip. The proposed method uses a mathematical model of the system together with the expert knowledge to perform this adjustment while minimizing the effect of the stated problem. In order to improve the speed of the controller in rejecting disturbances introduced by entry strip thickness variations, expert knowledge is added as a feed-forward term to the HAGC system. Simulation results for the application of the proposed controller to a real cold mill show that the exit strip quality is highly improved.Keywords: Fuzzy feed-forward controller, monitor HAGC system, dynamic mathematical model, entry strip thickness deviation compensation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22068398 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method
Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas
Abstract:
To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.
Keywords: Building energy prediction, data mining, demand response, electricity market.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22058397 Biomass and Productivity Studies of Up-Land and Low-Land Vegetation in the Neglected Margin of a Tropical Lake
Authors: Mayank Singh, O. P. Singh ‘Vatsa’, M. P. Singh
Abstract:
Present paper deals with an evaluation of magnitude of changes in biomass and net primary productivity at ‘Gujar Tal’ sloppy lake margin at Jaunpur in tropical semi-arid region of eastern U.P. (India). The study site abandoned or neglected lands (50 ×125 m) was divided into two zones, i.e. upper zone (up-land) and lower zone (low-land). Maximum biomass in the upper zone of dominant weed Desmostachya bipinnata (L.) Stapf. was 207.47 g m-2 and ‘rest weeds’ was 457.45 g m-2 both in the month of September. In contrast, the peak biomass value in the lower zone of dominant weed Oryza rufipogon Griff. was 1571.44 g m-2 in October and ‘rest weeds’ 270.65 g m-2 in February. Among the two zones, the peak total community biomass was observed 1655.62 g m-2 (October) in the lower zone while its peak value for the upper zone 457.45 g m-2 (September) was comparatively low. Maximum percentage contribution of dominant weeds (D. bipinnata and O. rufipogon) in the respective upper and lower zones and ‘rest weeds’ in both the zones varied in different months in the total community biomass. The peak net primary productivity of dominant weed (D. bipinnata) was 2.09g m-2 day-1 (September) and ‘rest weeds’ was 2.37 g m-2 day-1 (August) in the upper zone, while the lower zone for O. rufipogon was 5.25 g m-2 day-1 (June) as this zone was inundated later and ‘rest weeds’ was 2.08 g m-2 day-1 (January, 2009). The annual net production of total community at site I was highest, 409.58 g m-2 yr-1 in the upper zone followed by 395.58 g m-2 per eight month in the lower zone as this zone was flooded with water during rainy season. The site significance of variations in biomass in relation to plant species was tested by analysis of variance. It was significant between months in all the two zones (p<0.01 and p<0.05).
Keywords: Biomass, Neglected Lake Margin, Productivity, Vegetation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17288396 Diagnosing the Cause and its Timing of Changes in Multivariate Process Mean Vector from Quality Control Charts using Artificial Neural Network
Authors: Farzaneh Ahmadzadeh
Abstract:
Quality control charts are very effective in detecting out of control signals but when a control chart signals an out of control condition of the process mean, searching for a special cause in the vicinity of the signal time would not always lead to prompt identification of the source(s) of the out of control condition as the change point in the process parameter(s) is usually different from the signal time. It is very important to manufacturer to determine at what point and which parameters in the past caused the signal. Early warning of process change would expedite the search for the special causes and enhance quality at lower cost. In this paper the quality variables under investigation are assumed to follow a multivariate normal distribution with known means and variance-covariance matrix and the process means after one step change remain at the new level until the special cause is being identified and removed, also it is supposed that only one variable could be changed at the same time. This research applies artificial neural network (ANN) to identify the time the change occurred and the parameter which caused the change or shift. The performance of the approach was assessed through a computer simulation experiment. The results show that neural network performs effectively and equally well for the whole shift magnitude which has been considered.Keywords: Artificial neural network, change point estimation, monte carlo simulation, multivariate exponentially weighted movingaverage
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13778395 Future of Electric Power Generation Technologies: Environmental and Economic Comparison
Authors: Abdulrahman A. Bahaddad, Mohammed Beshir
Abstract:
The objective of this paper is to demonstrate and describe eight different types of power generation technologies and to understand the history and future trends of each technology. In addition, a comparative analysis between these technologies will be presented with respect to their cost analysis and associated performance.
Keywords: Conventional power generation, economic analysis, environmental impact, renewable energy power generation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253