Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30184
Haptics Enabled of ine AFM Image Analysis

Authors: Bhatti A., Nahavandi S., Hossny M.

Abstract:

Current advancements in nanotechnology are dependent on the capabilities that can enable nano-scientists to extend their eyes and hands into the nano-world. For this purpose, a haptics (devices capable of recreating tactile or force sensations) based system for AFM (Atomic Force Microscope) is proposed. The system enables the nano-scientists to touch and feel the sample surfaces, viewed through AFM, in order to provide them with better understanding of the physical properties of the surface, such as roughness, stiffness and shape of molecular architecture. At this stage, the proposed work uses of ine images produced using AFM and perform image analysis to create virtual surfaces suitable for haptics force analysis. The research work is in the process of extension from of ine to online process where interaction will be done directly on the material surface for realistic analysis.

Keywords: Haptics, AFM, force feedback, image analysis.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1061366

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1204

References:


[1] D. Schaefer, R. Reifenberger, A. Patil and R. Andres, Fabrication of two dimensional arrays od nanometer-size clusters with the atomic force microscope Appl. Phys. Letters 66: 1012-1014, 1995.
[2] T. Junno, K. Deppert, L. Montellius and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope Phys. Rev. Letters 66(26): 3627-3629, 1995.
[3] L. Hansen, A. Kuhle, A. Sorensen, J. Bohr and P. Lindelof, A technique for positioning nano-particles using an atomic force microscope Nanotechnology 9: 337-342, 1998.
[4] G. Binning, C. Quate, and C. Gerber, Atomic Force Microscope Phys. Rev. Letters 56(9): 930-933, 1986.
[5] A. Ferreira and C. Mavroidis, Virtual Reality and Haptics for Nano Robotics: A Review Study IEEE Robotics and Automation Magzine, 2006.
[6] G. Varadhan, W. Robinett, D. Erie and R. Taylor, Fast simulation of atomic force microscope imaging a polygonal surfaces using graphics hardware, 2004
[7] L. Fok, Y. Liu and W. Li, Haptic Sensing and Modeling of Nanomanipulation with an AFM, IEEE International Conference on Robotics and Biomimetics, 2004
[8] M. Corno and M. Zefran, Haptic Playback: Modeling, Controller Design, and Stability Analysis Proceedings of Robotics: Science and Systems, 2006
[9] E, Saddik, The Potential of Haptics Technologies, Instrumentation and Measurement Magazine 10(1): 10-17, 2007
[10] B. Nelson, Y. Zhpu and B. Vikramaditya, Sensor based microassembly of Hybrid MEMS devices IEEE Control systems, 1998
[11] M. Tortonese, H. Yamada, C. Berrett and F. Quate, Artomic force microscopy using a piezoresistive cantilever Int. conf. on Solid State Sensors and Actuators, 1991
[12] L. Fok, Y. Liu and W. Li, Modeling of Haptic Sensing of Nanolithography with an Atomic Force Microscope International Conference on Robotics and Automation, 2005
[13] G. Li, N. Xi, M. Yu, W. Fung, Development of Augmented Reality System for AFM-Based Nanomanipulation, IEEE ASME Transections on Mechatronics 9(2): 358-365, 2004
[14] G. Binning, C. Quate and C. Gerber, Atomic force microscope Phys. Rev. Lett., 56(9): 930933, 1986
[15] D. Schaefer, R. Reifenberger, A. Patil and R. Andres, Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett., 66: 10121014, 1995.
[16] T. Junno, K. Deppert, L. Montelius, and L. Samuelson, Controlled manipulation of nanoparticles with an atomic force microscope Appl. Phys. Lett., 66(26): 36273629, 1995.
[17] A. Requicha, C. Baur, A. Bugacov, B. Gazen, B. Koel, A. Madhukar, T. Ramachandran, R. Resch, and P. Will, Nanorobotic assembly of two-dimensional structures, in Proc. IEEE Int. Conf. Robotics and Automation, p. 33683374. 1998,
[18] L. Hansen, A. Kuhle, A. Sorensen, J. Bohr, and P. Lindelof, A technique for positioning nanoparticles using an atomic force microscope, Nanotechnology, 9:337342, 1998.
[19] M. Asghar, and K. Barner, Nonlinear Multiresolution Techniques with Applications to Scientific Visualization in a Haptic Environment, IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7(1): 76-93, 2001