**Commenced**in January 2007

**Frequency:**Monthly

**Edition:**International

**Paper Count:**31584

##### Analysis of Heart Beat Dynamics through Singularity Spectrum

**Authors:**
Harish Kumar,
Hussein Yahia,
Oriol Pont,
Michel Haissaguerre,
Nicolas Derval,
Meleze Hocini

**Abstract:**

**Keywords:**
Microcanonical Multiscale Formalism (MMF),
UnpredictablePoints Manifold (UPM),
Heartbeat Dynamics.

**Digital Object Identifier (DOI):**
doi.org/10.5281/zenodo.1056144

**References:**

[1] M. Malik and A. Camm, and Members of the Task Force, Heart rate variability: standards of measurement, physiological interpretation, and clinical use, Circulation, vol. 93, pp. 10431065, 1996.

[2] P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, Z. Struzik, H. Stanley, Multifractality in human heartbeat dynamics, Nature 399, pp. 461465, 1999.

[3] P. Ivanov, Long-range dependence in heartbeat dynamics, In G. Rangarajan, M. Ding (eds.) Processes with Long-Range Correlations, Lecture Notes in Physics, Springer Berlin / Heidelberg, vol. 621, pp. 339372, 2003.

[4] S. Kozaitis, Improved feature detection in ecg signals through denoising, International Journal of Signal and Imaging Systems Engineering, 1(2), pp. 108114, 2008.

[5] R. Klabunde, Cardiovascular Physiology Concepts, Lippincott Williams Wilkins, Hagerstwon, 2005.

[6] C. Peng, J. Mietus, J. Hausdorff, S. Havlin, H. Stanley, and A. Goldberger, Long-Range Anticorrelations and Non-Gaussian Behavior of the Heartbeat, Phys. Rev. Lett., 70, pp. 1343-1346, 1993.

[7] S. Thurner, M. Feurstein, and M. Teich, Multiresolution Wavelet Analysis of Heartbeat Intervals Discriminates Healthy Patients from Those with Cardiac Pathology, Phys. Rev. Lett., 80, pp. 1544-1547, 1998.

[8] L. Amaral, P. Ivanov, N. Aoyagi, I. Hidaka, S. Tomono, A. Goldberger, H. Stanley, and Y. Yamamoto, Behavioral-Independent Features of Complex Heartbeat Dynamics, Phys. Rev. Lett., 86, pp. 6026-6029, 2001.

[9] Y. Ashkenazy, P. Ivanov, S. Havlin, C. Peng, A. Goldberger, and H. Stanley, Magnitude and Sign Correlations in Heartbeat Fluctuations, Phys. Rev. Lett., 86, pp. 1900-1903, 2001.

[10] P. Bernaola-Galvan, P. Ivanov, L. Amaral, and H. Stanley, Scale Invariance in the Nonstationarity of Human Heart Rate, Phys. Rev. Lett., 87, 168105, 2001.

[11] P. Ivanov, L. Amaral, A. Goldberger, S. Havlin, M. Rosenblum, H. Stanley, and Z. Struzik, From 1/f Noise to Multifractal Cascades in Heartbeat Dyamics, Chaos 11, pp. 641-652, 2001.

[12] V. Ribeiro, R. Riedi, M. Crouse, R. Baraniuk, Multiscale queuing analysis of long-range-dependent network traffic, In: INFOCOM (2), pp. 10261035, 2000.

[13] O. Pont, A. Turiel, C. Perez-Vicente, Application of the microcanonical multifractal formalism to monofractal systems, Physical Review E 74, 061110061123, 2006.

[14] A. Turiel, H. Yahia, C. Perez-Vicente, Microcanonical multifractal formalism: a geometrical approach to multifractal systems. Part I: Singularity analysis, Journal of Physics A, 41, 015501, 2008.

[15] S. Mallat, W. Huang, Singularity detection and processing with wavelets, IEEE Trans. in Inf. Th. 38, pp. 617643, 1992.

[16] S. Mallat, S. Zhong, Wavelet transform maxima and multiscale edges, In: et al, M.B.R. (ed.) Wavelets and their applications, Jones and Bartlett, Boston, 1991.

[17] O. Pont, A. Turiel, C. Perez-Vicente, On optimal wavelet bases for the realization of microcanonical cascade processes, Int. J. Wavelets Multi., IJWMIP, 9(1), pp. 3561 , 2011.

[18] A. Turiel, C. Perez-Vicente, J. Grazzini, Numerical methods for the estimation of multifractal singularity spectra on sampled data: a comparative study, Journal of Computational Physics, 216(1), pp. 362390, 2006.

[19] S. Jaffard, Multifractal formalism for functions. I. Results valid for all functions, SIAM Journal of Mathematical Analysis 28(4), 944-970, 1997.

[20] I. Simonsen, A. Hansen, O. Magnar, Determination of the hurst exponent by use of wavelet transforms, Phys. Rev. E, 58(3), pp. 2779-2787, 1998.

[21] C. Jones, G. Lonergan, D. Mainwaring, Wavelet packet computation of the hurst exponent, J. Phys. A: Math. Gen, 29(10), 2509, 1996.

[22] A. Turiel, N. Parga, The multi-fractal structure of contrast changes in natural images: from sharp edges to textures, Neural Computation 12, 763-793, 2000.

[23] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, 2nd Edition, 1999.

[24] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley and sons, Chichester, 1990.

[25] A. Arneodo, F. Argoul, E. Bacry, J. Elezgaray, J. Muzy, Ondelettes multifractales et turbulence, Diderot Editeur, Paris, France, 1995.

[26] G. Parisi, U. Frisch, On the singularity structure of fully developed turbulence, in: M. Ghil, R. Benzi, G. Parisi (Eds.), Turbulence and Predictability in Geophysical Fluid Dynamics. Proc. Intl. School of Physics E. Fermi, North Holland, Amsterdam, pp. 84-87, 1985.

[27] O. Pont, A. Turiel, H. Yahia, An Optimized Algorithm for the Evaluation of Local Singularity Exponents in Digital Signals, IWCIA, 6636, pp, 346- 357, 2011.