Search results for: integrated control
4154 Sliding Mode Based Behavior Control
Authors: Selim Yannier, Asif Sabanovic, Ahmet Onat, Muhammet Bastan
Abstract:
In this work, we suggested a new approach for the control of a mobile robot capable of being a building block of an intelligent agent. This approach includes obstacle avoidance and goal tracking implemented as two different sliding mode controllers. A geometry based behavior arbitration is proposed for fusing the two outputs. Proposed structure is tested on simulations and real robot. Results have confirmed the high performance of the method.Keywords: Autonomous Mobile Robot, Behavior Based Control, Fast Local Obstacle Avoidance, Sliding Mode Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17564153 Autonomous Control of a Mobile Manipulator
Authors: Shonal Singh, Bibhya Sharma, Jito Vanualailai
Abstract:
This paper considers the design of a motion planner that will simultaneously accomplish control and motion planning of a n-link nonholonomic mobile manipulator, wherein, a n-link holonomic manipulator is coupled with a nonholonomic mobile platform, within an obstacle-ridden environment. This planner, derived from the Lyapunov-based control scheme, generates collision-free trajectories from an initial configuration to a final configuration in a constrained environment cluttered with stationary solid objects of different shapes and sizes. We demonstrate the efficiency of the control scheme and the resulting acceleration controllers of the mobile manipulator with results through computer simulations of an interesting scenario.Keywords: Artificial potential fields, Lyapunov-based control scheme, Lyapunov stability, nonholonomic manipulator, minimum distance technique, kinodynamic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14154152 Posture Stabilization of Kinematic Model of Differential Drive Robots via Lyapunov-Based Control Design
Abstract:
In this paper, the problem of posture stabilization for a kinematic model of differential drive robots is studied. A more complex model of the kinematics of differential drive robots is used for the design of stabilizing control. This model is formulated in terms of the physical parameters of the system such as the radius of the wheels, and velocity of the wheels are the control inputs of it. In this paper, the framework of Lyapunov-based control design has been used to solve posture stabilization problem for the comprehensive model of differential drive robots. The results of the simulations show that the devised controller successfully solves the posture regulation problem. Finally, robustness and performance of the controller have been studied under system parameter uncertainty.Keywords: Differential drive robots, nonlinear control, Lyapunov-based control design, posture regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17974151 Software Tools for System Identification and Control using Neural Networks in Process Engineering
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco
Abstract:
Neural networks offer an alternative approach both for identification and control of nonlinear processes in process engineering. The lack of software tools for the design of controllers based on neural network models is particularly pronounced in this field. SIMULINK is properly a widely used graphical code development environment which allows system-level developers to perform rapid prototyping and testing. Such graphical based programming environment involves block-based code development and offers a more intuitive approach to modeling and control task in a great variety of engineering disciplines. In this paper a SIMULINK based Neural Tool has been developed for analysis and design of multivariable neural based control systems. This tool has been applied to the control of a high purity distillation column including non linear hydrodynamic effects. The proposed control scheme offers an optimal response for both theoretical and practical challenges posed in process control task, in particular when both, the quality improvement of distillation products and the operation efficiency in economical terms are considered.Keywords: Distillation, neural networks, software tools, identification, control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27074150 Solutions to Probabilistic Constrained Optimal Control Problems Using Concentration Inequalities
Authors: Tomoaki Hashimoto
Abstract:
Recently, optimal control problems subject to probabilistic constraints have attracted much attention in many research field. Although probabilistic constraints are generally intractable in optimization problems, several methods haven been proposed to deal with probabilistic constraints. In most methods, probabilistic constraints are transformed to deterministic constraints that are tractable in optimization problems. This paper examines a method for transforming probabilistic constraints into deterministic constraints for a class of probabilistic constrained optimal control problems.Keywords: Optimal control, stochastic systems, discrete-time systems, probabilistic constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13764149 Interfacing Photovoltaic Systems to the Utility Grid: A Comparative Simulation Study to Mitigate the Impact of Unbalanced Voltage Dips
Authors: Badr M. Alshammari, A. Rabeh, A. K. Mohamed
Abstract:
This paper presents the modeling and the control of a grid-connected photovoltaic system (PVS). Firstly, the MPPT control of the PVS and its associated DC/DC converter has been analyzed in order to extract the maximum of available power. Secondly, the control system of the grid side converter (GSC) which is a three-phase voltage source inverter (VSI) has been presented. A special attention has been paid to the control algorithms of the GSC converter during grid voltages imbalances. Especially, three different control objectives are to achieve; the mitigation of the grid imbalance adverse effects, at the point of common coupling (PCC), on the injected currents, the elimination of double frequency oscillations in active power flow, and the elimination of double frequency oscillations in reactive power flow. Simulation results of two control strategies have been performed via MATLAB software in order to demonstrate the particularities of each control strategy according to power quality standards.
Keywords: Renewable energies, photovoltaic systems, DC link, voltage source inverter, space vector SVPWM, unbalanced voltage dips, symmetrical components.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16264148 Comparative Analysis of Different Control Strategies for Electro-hydraulic Servo Systems
Authors: Ismail Algelli Sassi Ehtiwesh, Željko Đurović
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the control strategy that may be used for the control of the servomechanism system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy (classical feedback (PID) & neural network) using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with classical control.Keywords: Electro-hydraulic systems, PID, Neural network controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18394147 Smith Predictor Design by CDM for Temperature Control System
Authors: Roengruen P., Tipsuwanporn V., Puawade P., Numsomran A.
Abstract:
Smith Predictor control is theoretically a good solution to the problem of controlling the time delay systems. However, it seldom gets use because it is almost impossible to find out a precise mathematical model of the practical system and very sensitive to uncertain system with variable time-delay. In this paper is concerned with a design method of smith predictor for temperature control system by Coefficient Diagram Method (CDM). The simulation results show that the control system with smith predictor design by CDM is stable and robust whilst giving the desired time domain system performance.
Keywords: CDM, Smith Predictor, temperature process
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24354146 Using Fuzzy Controller in Induction Motor Speed Control with Constant Flux
Authors: Hassan Baghgar Bostan Abad, Ali Yazdian Varjani, Taheri Asghar
Abstract:
Variable speed drives are growing and varying. Drives expanse depend on progress in different part of science like power system, microelectronic, control methods, and so on. Artificial intelligent contains hard computation and soft computation. Artificial intelligent has found high application in most nonlinear systems same as motors drive. Because it has intelligence like human but there are no sentimental against human like angriness and.... Artificial intelligent is used for various points like approximation, control, and monitoring. Because artificial intelligent techniques can use as controller for any system without requirement to system mathematical model, it has been used in electrical drive control. With this manner, efficiency and reliability of drives increase and volume, weight and cost of them decrease.
Keywords: Artificial intelligent, electrical motor, intelligent drive and control,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24844145 Photonic Crystals for Novel Applications in Integrated-Optic Communication Systems and Devices
Authors: Vijay Janyani, Neetu Joshi, Jigyasa Pagaria, Parul Pathak
Abstract:
Photonic Crystal (PhC) based devices are being increasingly used in multifunctional, compact devices in integrated optical communication systems. They provide excellent controllability of light, yet maintaining the small size required for miniaturization. In this paper, the band gap properties of PhCs and their typical applications in optical waveguiding are considered. Novel PhC based applications such as nonlinear switching and tapers are considered and simulation results are shown using the accurate time-domain numerical method based on Finite Difference Time Domain (FDTD) scheme. The suitability of these devices for novel applications is discussed and evaluated.Keywords: Band gap engineering, Nonlinear switching, Photonic crystals, PhC tapers, waveguides.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14434144 Design of Coal Quality Disturbance Free System for Coordinated Control System Based on Gain Scheduling
Authors: Liu Ji-Wei, Pei Yu-Liang, Liu Qian, Han Xiang, Zeng De-Liang
Abstract:
The economic and stable operation was affected seriously by coal quality disturbance for power plants. Based on model analysis, influence of the disturbance can be considered as gain change of control system. Power capability coefficient of coal was constructed to inhibit it. Accuracy of the coefficient was verified by operating data. Then coal quality disturbance free system based on gain scheduling was designed for coordinated control system. Simulation showed that, the strategy improved control quality obviously, and inhibited the coal quality disturbance.Keywords: coordinate control system, coal quality disturbance, energy coefficient of coal quality, gain scheduling
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14214143 Manufacturing of Full Automatic Carwash Using with Intelligent Control Algorithms
Authors: Amir Hossein Daei Sorkhabi, Bita Khazini
Abstract:
In this paper the intelligent control of full automatic car wash using a programmable logic controller (PLC) has been investigated and designed to do all steps of carwashing. The Intelligent control of full automatic carwash has the ability to identify and profile the geometrical dimensions of the vehicle chassis. Vehicle dimension identification is an important point in this control system to adjust the washing brushes position and time duration. The study also tries to design a control set for simulating and building the automatic carwash. The main purpose of the simulation is to develop criteria for designing and building this type of carwash in actual size to overcome challenges of automation. The results of this research indicate that the proposed method in process control not only increases productivity, speed, accuracy and safety but also reduce the time and cost of washing based on dynamic model of the vehicle. A laboratory prototype based on an advanced intelligent control has been built to study the validity of the design and simulation which it’s appropriate performance confirms the validity of this study.
Keywords: Automatic Carwash, Dimension, PLC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 68244142 Optimal Control Strategy for High Performance EV Interior Permanent Magnet Synchronous Motor
Authors: Mehdi Karbalaye Zadeh, Ehsan M. Siavashi
Abstract:
The controllable electrical loss which consists of the copper loss and iron loss can be minimized by the optimal control of the armature current vector. The control algorithm of current vector minimizing the electrical loss is proposed and the optimal current vector can be decided according to the operating speed and the load conditions. The proposed control algorithm is applied to the experimental PM motor drive system and this paper presents a modern approach of speed control for permanent magnet synchronous motor (PMSM) applied for Electric Vehicle using a nonlinear control. The regulation algorithms are based on the feedback linearization technique. The direct component of the current is controlled to be zero which insures the maximum torque operation. The near unity power factor operation is also achieved. More over, among EV-s motor electric propulsion features, the energy efficiency is a basic characteristic that is influenced by vehicle dynamics and system architecture. For this reason, the EV dynamics are taken into account.Keywords: PMSM, Electric Vehicle, Optimal control, Traction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17684141 A Variable Stiffness Approach to Vibration Control
Authors: S. A. Alotaibi, M. A. Al-Ajmi
Abstract:
This work introduces a new concept for controlling the mechanical vibrations via variable stiffness coil spring. The concept relies on fitting a screw though the spring to change the number of active spring coils. A prototype has been built and tested with promising results toward an innovation in the field of vibration control.
Keywords: Variable stiffness, coil spring, vibration control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20984140 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks
Authors: M. Sedighizadeh, A. Rezazadeh
Abstract:
In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20044139 Comparison of Conventional Control and Robust Control on Double-Pipe Heat Exchanger
Authors: Hanan Rizk
Abstract:
Heat exchanger is a device used to mix liquids having different temperatures. In this case, the temperature control becomes a critical objective. This research work presents the temperature control of the double-pipe heat exchanger (multi-input multi-output (MIMO) system), which is modeled as first-order coupled hyperbolic partial differential equations (PDEs), using conventional and advanced control techniques, and develops appropriate robust control strategy to meet stability requirements and performance objectives. We designed the proportional–integral–derivative (PID) controller and H-infinity controller for a heat exchanger (HE) system. Frequency characteristics of sensitivity functions and open-loop and closed-loop time responses are simulated using MATLAB software and the stability of the system is analyzed using Kalman's test. The simulation results have demonstrated that the H-infinity controller is more efficient than PID in terms of robustness and performance.
Keywords: heat exchanger, multi-input multi-output system, MATLAB simulation, partial differential equations, PID controller, robust control
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6964138 Overload Control in a SIP Signaling Network
Authors: Masataka Ohta
Abstract:
The Internet telephony employs a new type of Internet communication on which a mutual communication is realized by establishing sessions. Session Initiation Protocol (SIP) is used to establish sessions between end-users. For unreliable transmission (UDP), SIP message should be retransmitted when it is lost. The retransmissions increase a load of the SIP signaling network, and sometimes lead to performance degradation when a network is overloaded. The paper proposes an overload control for a SIP signaling network to protect from a performance degradation. Introducing two thresholds in a queue of a SIP proxy server, the SIP proxy server detects a congestion. Once congestion is detected, a SIP signaling network restricts to make new calls. The proposed overload control is evaluated using the network simulator (ns-2). With simulation results, the paper shows the proposed overload control works well.
Keywords: SIP signalling congestion overload control retransmission throughput simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17584137 Design Neural Network Controller for Mechatronic System
Authors: Ismail Algelli Sassi Ehtiwesh, Mohamed Ali Elhaj
Abstract:
The main goal of the study is to analyze all relevant properties of the electro hydraulic systems and based on that to make a proper choice of the neural network control strategy that may be used for the control of the mechatronic system. A combination of electronic and hydraulic systems is widely used since it combines the advantages of both. Hydraulic systems are widely spread because of their properties as accuracy, flexibility, high horsepower-to-weight ratio, fast starting, stopping and reversal with smoothness and precision, and simplicity of operations. On the other hand, the modern control of hydraulic systems is based on control of the circuit fed to the inductive solenoid that controls the position of the hydraulic valve. Since this circuit may be easily handled by PWM (Pulse Width Modulation) signal with a proper frequency, the combination of electrical and hydraulic systems became very fruitful and usable in specific areas as airplane and military industry. The study shows and discusses the experimental results obtained by the control strategy of neural network control using MATLAB and SIMULINK [1]. Finally, the special attention was paid to the possibility of neuro-controller design and its application to control of electro-hydraulic systems and to make comparative with other kinds of control.
Keywords: Neural-Network controller, Mechatronic, electrohydraulic
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21824136 Nonlinear Model Predictive Control for Solid Oxide Fuel Cell System Based On Wiener Model
Authors: T. H. Lee, J. H. Park, S. M. Lee, S. C. Lee
Abstract:
In this paper, we consider Wiener nonlinear model for solid oxide fuel cell (SOFC). The Wiener model of the SOFC consists of a linear dynamic block and a static output non-linearity followed by the block, in which linear part is approximated by state-space model and the nonlinear part is identified by a polynomial form. To control the SOFC system, we have to consider various view points such as operating conditions, another constraint conditions, change of load current and so on. A change of load current is the significant one of these for good performance of the SOFC system. In order to keep the constant stack terminal voltage by changing load current, the nonlinear model predictive control (MPC) is proposed in this paper. After primary control method is designed to guarantee the fuel utilization as a proper constant, a nonlinear model predictive control based on the Wiener model is developed to control the stack terminal voltage of the SOFC system. Simulation results verify the possibility of the proposed Wiener model and MPC method to control of SOFC system.
Keywords: SOFC, model predictive control, Wiener model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20684135 A Study of the Lighting Control System for a Daylit Office
Authors: Chih-Jian Hu, Chung-Chih Cheng, Hsiao-Yuan Wu., Nien-Tzu Chao
Abstract:
Increasing user comfort and reducing operation costs have always been primary objectives of lighting control strategies in a building. This paper proposes an architecture of the lighting control system for a daylit office. The system consists of the lighting controller, A/D & D/A converter, dimmable LED lights, and the lighting management software. Verification tests are conducted using the proposed system specialized for the interior lighting of a open-plan office. The results showed the proposed architecture of the lighting system would improve the overall system reliability, lower the system cost, and provide ease of installation and maintenance.Keywords: control, dimming, LED, lighting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18914134 Design and Control of DC-DC Converter for the Military Application Fuel Cell
Authors: Tae-Yeong Lee, Eun-Ju Yoo, Won-Yeong Choi, Young-Woo Park
Abstract:
This paper presents a 24 watts SEPIC converter design and control using microprocessor. SEPIC converter has advantages of a wide input range and miniaturization caused by the low stress at elements. There is also an advantage that the input and output are isolated in MOSFET-off state. This paper presents the PID control through the SEPIC converter transfer function using a DSP and the protective circuit for fuel cell from the over-current and inverse-voltage by using the characteristic of SEPIC converter. Then it derives them through the experiments.Keywords: DC-DC Converter, Fuel-Cell, Microprocessor Control, Military Converter, SEPIC Converter
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23334133 The Effect of Response Feedback on Performance of Active Controlled Nonlinear Frames
Authors: M. Mohebbi, K. Shakeri
Abstract:
The effect of different combinations of response feedback on the performance of active control system on nonlinear frames has been studied in this paper. To this end different feedback combinations including displacement, velocity, acceleration and full response feedback have been utilized in controlling the response of an eight story bilinear hysteretic frame which has been subjected to a white noise excitation and controlled by eight actuators which could fully control the frame. For active control of nonlinear frame Newmark nonlinear instantaneous optimal control algorithm has been used which a diagonal matrix has been selected for weighting matrices in performance index. For optimal design of active control system while the objective has been to reduce the maximum drift to below the yielding level, Distributed Genetic Algorithm (DGA) has been used to determine the proper set of weighting matrices. The criteria to assess the effect of each combination of response feedback have been the minimum required control force to reduce the maximum drift to below the yielding drift. The results of numerical simulation show that the performance of active control system is dependent on the type of response feedback where the velocity feedback is more effective in designing optimal control system in comparison with displacement and acceleration feedback. Also using full feedback of response in controller design leads to minimum control force amongst other combinations. Also the distributed genetic algorithm shows acceptable convergence speed in solving the optimization problem of designing active control systems.Keywords: Active control, Distributed genetic algorithms, Response feedback, Weighting matrices.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14064132 Extended Minimal Controller Synthesis for Voltage-Fed Induction Motor Based on the Hyperstability Theory
Authors: A. Ramdane, F.Naceri, S. Ramdane
Abstract:
in this work, we present a new strategy of direct adaptive control denoted: Extended minimal controller synthesis (EMCS). This algorithm is designed for an induction motor, which includes both electrical and mechanical dynamics under the assumptions of linear magnetic circuits. The main motivation of the EMCS control is to enhance the robustness of the MRAC algorithms, i.e. the rejection of bounded effects of rapidly varying external disturbances.
Keywords: Adaptive Control, Simple model reference adaptive control (SMRAC), Extended Minimal Controller synthesis (EMCS), Induction Motor (IM)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16404131 Robust Stability in Multivariable Neural Network Control using Harmonic Analysis
Authors: J. Fernandez de Canete, S. Gonzalez-Perez, P. del Saz-Orozco, I. Garcia-Moral
Abstract:
Robust stability and performance are the two most basic features of feedback control systems. The harmonic balance analysis technique enables to analyze the stability of limit cycles arising from a neural network control based system operating over nonlinear plants. In this work a robust stability analysis based on the harmonic balance is presented and applied to a neural based control of a non-linear binary distillation column with unstructured uncertainty. We develop ways to describe uncertainty in the form of neglected nonlinear dynamics and high harmonics for the plant and controller respectively. Finally, conclusions about the performance of the neural control system are discussed using the Nyquist stability margin together with the structured singular values of the uncertainty as a robustness measure.Keywords: Robust stability, neural network control, unstructured uncertainty, singular values, distillation column.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16294130 A Novel Method for Areal Surface Roughness Measurement
Authors: Romuald Synak, Wlodzimierz Lipinski, Marcin Pawelczak
Abstract:
An area-integrating method that uses the technique of total integrated light scatter for evaluating the root mean square height of the surface Sq has been presented in the paper. It is based on the measurement of the scatter power using a flat photodiode integrator rather than an optical sphere or a hemisphere. By this means, one can obtain much less expensive and smaller instruments than traditional ones. Thanks to this, they could find their application for surface control purposes, particularly in small and medium size enterprises. A description of the functioning of the measuring unit as well as the impact caused by different factors on its properties is presented first. Next, results of measurements of the Sq values performed for optical, silicon and metal samples have been shown. It has been also proven that they are in a good agreement with the results obtained using the Ulbricht sphere instrument.
Keywords: ISO 25178 Standard, scatterometry, surface metrology, surface roughness
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17324129 Representing Uncertainty in Computer-Generated Forces
Authors: Ruibiao J. Guo, Brad Cain, Pierre Meunier
Abstract:
The Integrated Performance Modelling Environment (IPME) is a powerful simulation engine for task simulation and performance analysis. However, it has no high level cognition such as memory and reasoning for complex simulation. This article introduces a knowledge representation and reasoning scheme that can accommodate uncertainty in simulations of military personnel with IPME. This approach demonstrates how advanced reasoning models that support similarity-based associative process, rule-based abstract process, multiple reasoning methods and real-time interaction can be integrated with conventional task network modelling to provide greater functionality and flexibility when modelling operator performance.Keywords: Computer-Generated Forces, Human Behaviour Representation, IPME, Modelling and Simulation, Uncertainty Reasoning
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21174128 A Strategy to Optimize the SPC Scheme for Mass Production of HDD Arm with ClusteringTechnique and Three-Way Control Chart
Authors: W. Chattinnawat
Abstract:
Consider a mass production of HDD arms where hundreds of CNC machines are used to manufacturer the HDD arms. According to an overwhelming number of machines and models of arm, construction of separate control chart for monitoring each HDD arm model by each machine is not feasible. This research proposed a strategy to optimize the SPC management on shop floor. The procedure started from identifying the clusters of the machine with similar manufacturing performance using clustering technique. The three way control chart ( I - MR - R ) is then applied to each clustered group of machine. This proposed research has advantageous to the manufacturer in terms of not only better performance of the SPC but also the quality management paradigm.Keywords: Three way control chart. I - MR - R , between/within variation, HDD arm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16354127 Optimal Control of Viscoelastic Melt Spinning Processes
Authors: Shyam S.N. Perera
Abstract:
The optimal control problem for the viscoelastic melt spinning process has not been reported yet in the literature. In this study, an optimal control problem for a mathematical model of a viscoelastic melt spinning process is considered. Maxwell-Oldroyd model is used to describe the rheology of the polymeric material, the fiber is made of. The extrusion velocity of the polymer at the spinneret as well as the velocity and the temperature of the quench air and the fiber length serve as control variables. A constrained optimization problem is derived and the first–order optimality system is set up to obtain the adjoint equations. Numerical solutions are carried out using a steepest descent algorithm. A computer program in MATLAB is developed for simulations.Keywords: Fiber spinning, Maxwell-Oldroyd, Optimal control, First-order optimality system, Adjoint system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18884126 Digital Twin of Real Electrical Distribution System with Real Time Recursive Load Flow Calculation and State Estimation
Authors: Anosh Arshad Sundhu, Francesco Giordano, Giacomo Della Croce, Maurizio Arnone
Abstract:
Digital Twin (DT) is a technology that generates a virtual representation of a physical system or process, enabling real-time monitoring, analysis, and simulation. DT of an Electrical Distribution System (EDS) can perform online analysis by integrating the static and real-time data in order to show the current grid status and predictions about the future status to the Distribution System Operator (DSO), producers and consumers. DT technology for EDS also offers the opportunity to DSO to test hypothetical scenarios. This paper discusses the development of a DT of an EDS by Smart Grid Controller (SGC) application, which is developed using open-source libraries and languages. The developed application can be integrated with Supervisory Control and Data Acquisition System (SCADA) of any EDS for creating the DT. The paper shows the performance of developed tools inside the application, tested on real EDS for grid observability, Smart Recursive Load Flow (SRLF) calculation and state estimation of loads in MV feeders.
Keywords: Digital Twin, Distribution System Operator, Electrical Distribution System, Smart Grid Controller, Supervisory Control and Data Acquisition System, Smart Recursive Load Flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2554125 Nonlinear Fuzzy Tracking Real-time-based Control of Drying Parameters
Authors: Marco Soares dos Santos, Camila Nicola Boeri, Jorge Augusto Ferreira, Fernando Neto da Silva
Abstract:
The highly nonlinear characteristics of drying processes have prompted researchers to seek new nonlinear control solutions. However, the relation between the implementation complexity, on-line processing complexity, reliability control structure and controller-s performance is not well established. The present paper proposes high performance nonlinear fuzzy controllers for a real-time operation of a drying machine, being developed under a consistent match between those issues. A PCI-6025E data acquisition device from National Instruments® was used, and the control system was fully designed with MATLAB® / SIMULINK language. Drying parameters, namely relative humidity and temperature, were controlled through MIMOs Hybrid Bang-bang+PI (BPI) and Four-dimensional Fuzzy Logic (FLC) real-time-based controllers to perform drying tests on biological materials. The performance of the drying strategies was compared through several criteria, which are reported without controllers- retuning. Controllers- performance analysis has showed much better performance of FLC than BPI controller. The absolute errors were lower than 8,85 % for Fuzzy Logic Controller, about three times lower than the experimental results with BPI control.Keywords: Drying control, Fuzzy logic control, Intelligent temperature-humidity control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338