Search results for: Glass fiber
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 737

Search results for: Glass fiber

317 Some Physical Properties of Musk Lime (Citrus Microcarpa)

Authors: M.H.R.O. Abdullah, P.E. Ch'ng, N.A. Yunus

Abstract:

Some physical properties of musk lime (Citrus microcarpa) were determined in this study. The average moisture content (wet basis) of the fruit was found to be 85.10 (±0.72) %. The mean of length, width and thickness of the fruit was 26.36 (±0.97), 26.40 (±1.04) and 25.26 (±0.94) mm respectively. The average value for geometric mean diameter, sphericity, aspect ratio, mass, surface area, volume, true density, bulk density and porosity was 26.00 (±0.82) mm, 98.67 (±2.04) %, 100.23 (±3.28) %, 10.007 (±0.878) g, 2125.07 (±133.93) mm2, 8800.00 (±731.82) mm3, 1002.87 (±39.16) kgm-3, 501.70 (±22.58) kgm-3 and 49.89 (±3.15) % respectively. The coefficient of static friction on four types of structural surface was found to be varying from 0.238 (±0.025) for glass to 0.247 (±0.024) for steel surface.

Keywords: Musk lime, Citrus microcarpa, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3297
316 Training Radial Basis Function Networks with Differential Evolution

Authors: Bing Yu , Xingshi He

Abstract:

In this paper, Differential Evolution (DE) algorithm, a new promising evolutionary algorithm, is proposed to train Radial Basis Function (RBF) network related to automatic configuration of network architecture. Classification tasks on data sets: Iris, Wine, New-thyroid, and Glass are conducted to measure the performance of neural networks. Compared with a standard RBF training algorithm in Matlab neural network toolbox, DE achieves more rational architecture for RBF networks. The resulting networks hence obtain strong generalization abilities.

Keywords: differential evolution, neural network, Rbf function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
315 Evaluation of Ultrasonic C-Scan Images by Fractal Dimension

Authors: S. Samanta, D. Datta, S. S. Gautam

Abstract:

In this paper, quantitative evaluation of ultrasonic Cscan images through estimation of their Fractal Dimension (FD) is discussed. Necessary algorithm for evaluation of FD of any 2-D digitized image is implemented by developing a computer code. For the evaluation purpose several C-scan images of the Kevlar composite impacted by high speed bullet and glass fibre composite having flaw in the form of inclusion is used. This analysis automatically differentiates a C-scan image showing distinct damage zone, from an image that contains no such damage.

Keywords: C-scan, Impact, Fractal Dimension, Kevlar composite and Inclusion Flaw

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
314 Fatigue Properties and Strength Degradation of Carbon Fibber Reinforced Composites

Authors: Pasquale Verde, Giuseppe Lamanna

Abstract:

A two-parameter fatigue model explicitly accounting for the cyclic as well as the mean stress was used to fit static and fatigue data available in literature concerning carbon fiber reinforced composite laminates subjected tension-tension fatigue. The model confirms the strength–life equal rank assumption and predicts reasonably the probability of failure under cyclic loading. The model parameters were found by best fitting procedures and required a minimum of experimental tests.

Keywords: Fatigue life, strength, composites, Weibull distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
313 Green Sustainability Using Radio Frequency Identification: Technology-Organization-Environment Perspective Using Two Case Studies

Authors: Rebecca Angeles

Abstract:

This qualitative case study seeks to understand and explain the deployment of radio frequency identification (RFID) systems in two countries (i.e., in Taiwan for the adoption of electric scooters and in Finland for supporting glass bottle recycling) using the “Technology-Organization-Environment” theoretical framework. This study also seeks to highlight the relevance and importance of pursuing environmental sustainability in firms and in society in general due to the social urgency of the issues involved.

Keywords: Environmental sustainability, radio frequency identification, technology-organization-environment framework

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2118
312 Switching Studies on Ge15In5Te56Ag24 Thin Films

Authors: Diptoshi Roy, G. Sreevidya Varma, S. Asokan, Chandasree Das

Abstract:

Germanium Telluride based quaternary thin film switching devices with composition Ge15In5Te56Ag24, have been deposited in sandwich geometry on glass substrate with aluminum as top and bottom electrodes. The bulk glassy form of the said composition is prepared by melt quenching technique. In this technique, appropriate quantity of elements with high purity are taken in a quartz ampoule and sealed under a vacuum of 10-5 mbar. Then, it is allowed to rotate in a horizontal rotary furnace for 36 hours to ensure homogeneity of the melt. After that, the ampoule is quenched into a mixture of ice - water and NaOH to get the bulk ingot of the sample. The sample is then coated on a glass substrate using flash evaporation technique at a vacuum level of 10-6 mbar. The XRD report reveals the amorphous nature of the thin film sample and Energy - Dispersive X-ray Analysis (EDAX) confirms that the film retains the same chemical composition as that of the base sample. Electrical switching behavior of the device is studied with the help of Keithley (2410c) source-measure unit interfaced with Lab VIEW 7 (National Instruments). Switching studies, mainly SET (changing the state of the material from amorphous to crystalline) operation is conducted on the thin film form of the sample. This device is found to manifest memory switching as the device remains 'ON' even after the removal of the electric field. Also it is found that amorphous Ge15In5Te56Ag24 thin film unveils clean memory type of electrical switching behavior which can be justified by the absence of fluctuation in the I-V characteristics. The I-V characteristic also reveals that the switching is faster in this sample as no data points could be seen in the negative resistance region during the transition to on state and this leads to the conclusion of fast phase change during SET process. Scanning Electron Microscopy (SEM) studies are performed on the chosen sample to study the structural changes at the time of switching. SEM studies on the switched Ge15In5Te56Ag24 sample has shown some morphological changes at the place of switching wherein it can be explained that a conducting crystalline channel is formed in the device when the device switches from high resistance to low resistance state. From these studies it can be concluded that the material may find its application in fast switching Non-Volatile Phase Change Memory (PCM) Devices.

Keywords: Chalcogenides, vapor deposition, electrical switching, PCM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
311 Dynamic High-Rise Moment Resisting Frame Dissipation Performances Adopting Glazed Curtain Walls with Superelastic Shape Memory Alloy Joints

Authors: Lorenzo Casagrande, Antonio Bonati, Ferdinando Auricchio, Antonio Occhiuzzi

Abstract:

This paper summarizes the results of a survey on smart non-structural element dynamic dissipation when installed in modern high-rise mega-frame prototypes. An innovative glazed curtain wall was designed using Shape Memory Alloy (SMA) joints in order to increase the energy dissipation and enhance the seismic/wind response of the structures. The studied buildings consisted of thirty- and sixty-storey planar frames, extracted from reference three-dimensional steel Moment Resisting Frame (MRF) with outriggers and belt trusses. The internal core was composed of a CBF system, whilst outriggers were placed every fifteen stories to limit second order effects and inter-storey drifts. These structural systems were designed in accordance with European rules and numerical FE models were developed with an open-source code, able to account for geometric and material nonlinearities. With regard to the characterization of non-structural building components, full-scale crescendo tests were performed on aluminium/glass curtain wall units at the laboratory of the Construction Technologies Institute (ITC) of the Italian National Research Council (CNR), deriving force-displacement curves. Three-dimensional brick-based inelastic FE models were calibrated according to experimental results, simulating the fac¸ade response. Since recent seismic events and extreme dynamic wind loads have generated the large occurrence of non-structural components failure, which causes sensitive economic losses and represents a hazard for pedestrians safety, a more dissipative glazed curtain wall was studied. Taking advantage of the mechanical properties of SMA, advanced smart joints were designed with the aim to enhance both the dynamic performance of the single non-structural unit and the global behavior. Thus, three-dimensional brick-based plastic FE models were produced, based on the innovated non-structural system, simulating the evolution of mechanical degradation in aluminium-to-glass and SMA-to-glass connections when high deformations occurred. Consequently, equivalent nonlinear links were calibrated to reproduce the behavior of both tested and smart designed units, and implemented on the thirty- and sixty-storey structural planar frame FE models. Nonlinear time history analyses (NLTHAs) were performed to quantify the potential of the new system, when considered in the lateral resisting frame system (LRFS) of modern high-rise MRFs. Sensitivity to the structure height was explored comparing the responses of the two prototypes. Trends in global and local performance were discussed to show that, if accurately designed, advanced materials in non-structural elements provide new sources of energy dissipation.

Keywords: Advanced technologies, glazed curtain walls, non-structural elements, seismic-action reduction, shape memory alloy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1396
310 Threshold Submergence of Flow over PK Weirs

Authors: A. Javaheri, A. R. Kabiri-Samani

Abstract:

In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.

Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2183
309 Experimental and Numerical Study of Ultra-High-Performance Fiber-Reinforced Concrete Column Subjected to Axial and Eccentric Loads

Authors: Chengfeng Fang, Mohamed Ali Sadakkathulla, Abdul Sheikh

Abstract:

Ultra-high-performance fiber reinforced concrete (UHPFRC) is a specially formulated cement-based composite characterized with an ultra-high compressive strength (fc = 240 MPa) and a low water-cement ratio (W/B= 0.2). With such material characteristics, UHPFRC is favored for the design and constructions of structures required high structural performance and slender geometries. Unlike conventional concrete, the structural performance of members manufactured with UHPFRC has not yet been fully studied, particularly, for UHPFRC columns with high slenderness. In this study, the behaviors of slender UHPFRC columns under concentric or eccentric load will be investigated both experimentally and numerically. Four slender UHPFRC columns were tested under eccentric loads with eccentricities, of 0 mm, 35 mm, 50 mm, and 85 mm, respectively, and one UHPFRC beam was tested under four-point bending. Finite element (FE) analysis was conducted with concrete damage plasticity (CDP) modulus to simulating the load-middle height or middle span deflection relationships and damage patterns of all UHPFRC members. Simulated results were compared against the experimental results and observation to gain the confidence of FE model, and this model was further extended to conduct parametric studies, which aim to investigate the effects of slenderness regarding failure modes and load-moment interaction relationships. Experimental results showed that the load bearing capacities of the slender columns reduced with an increase in eccentricity. Comparisons between load-middle height and middle span deflection relationships as well as damage patterns of all UHPFRC members obtained both experimentally and numerically demonstrated high accuracy of the FE simulations. Based on the available FE model, the following parametric study indicated that a further increase in the slenderness of column resulted in significant decreases in the load-bearing capacities, ductility index, and flexural bending capacities.

Keywords: Eccentric loads, ductility index, RC column, slenderness, UHPFRC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
308 Machining of FRP Composites by Abrasive Jet Machining Optimization Using Taguchi

Authors: D. V. Srikanth, M. Sreenivasa Rao

Abstract:

Abrasive Jet Machining is an Unconventional machining process in which the metal is removed from brittle and hard material in the form of micro-chips. With increase in need of materials like ceramics, composites, in manufacturing of various Mechanical & Electronic components, AJM has become a useful technique for micro machining. The present study highlights the influence of different parameters like Pressure, SOD, Time, Abrasive grain size, nozzle diameter on the Metal removal of FRP (Fiber Reinforced Polymer) composite by Abrasive jet machining. The results of the Experiments conducted were analyzed and optimized with TAGUCHI method of Optimization and ANOVA for Optimal Value.

Keywords: ANOVA, FRP Composite, AJC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2691
307 Numerical Model of Low Cost Rubber Isolators for Masonry Housing in High Seismic Regions

Authors: Ahmad B. Habieb, Gabriele Milani, Tavio Tavio, Federico Milani

Abstract:

Housings in developing countries have often inadequate seismic protection, particularly for masonry. People choose this type of structure since the cost and application are relatively cheap. Seismic protection of masonry remains an interesting issue among researchers. In this study, we develop a low-cost seismic isolation system for masonry using fiber reinforced elastomeric isolators. The elastomer proposed consists of few layers of rubber pads and fiber lamina, making it lower in cost comparing to the conventional isolators. We present a finite element (FE) analysis to predict the behavior of the low cost rubber isolators undergoing moderate deformations. The FE model of the elastomer involves a hyperelastic material property for the rubber pad. We adopt a Yeoh hyperelasticity model and estimate its coefficients through the available experimental data. Having the shear behavior of the elastomers, we apply that isolation system onto small masonry housing. To attach the isolators on the building, we model the shear behavior of the isolation system by means of a damped nonlinear spring model. By this attempt, the FE analysis becomes computationally inexpensive. Several ground motion data are applied to observe its sensitivity. Roof acceleration and tensile damage of walls become the parameters to evaluate the performance of the isolators. In this study, a concrete damage plasticity model is used to model masonry in the nonlinear range. This tool is available in the standard package of Abaqus FE software. Finally, the results show that the low-cost isolators proposed are capable of reducing roof acceleration and damage level of masonry housing. Through this study, we are also capable of monitoring the shear deformation of isolators during seismic motion. It is useful to determine whether the isolator is applicable. According to the results, the deformations of isolators on the benchmark one story building are relatively small.

Keywords: Masonry, low cost elastomeric isolator, finite element analysis, hyperelasticity, damped non-linear spring, concrete damage plasticity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1185
306 Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane using (PECVD) Method

Authors: Hisham M. Abourayana, Nuri A. Zreiba, Abdulkader M. Elamin

Abstract:

Polymer-like organic thin films were deposited on both aluminum alloy type 6061 and glass substrates at room temperature by Plasma Enhanced Chemical Vapor Deposition (PECVD) methodusing benzene and hexamethyldisiloxane (HMDSO) as precursor materials. The surface and physical properties of plasma-polymerized organic thin films were investigated at different r.f. powers. The effects of benzene/argon ratio on the properties of plasma polymerized benzene films were also investigated. It is found that using benzene alone results in a non-coherent and non-adherent powdery deposited material. The chemical structure and surface properties of the asgrown plasma polymerized thin films were analyzed on glass substrates with FTIR and contact angle measurements. FTIR spectra of benzene deposited film indicated that the benzene rings are preserved when increasing benzene ratio and/or decreasing r.f. powers. FTIR spectra of HMDSO deposited films indicated an increase of the hydrogen concentration and a decrease of the oxygen concentration with the increase of r.f. power. The contact angle (θ) of the films prepared from benzene was found to increase by about 43% as benzene ratio increases from 10% to 20%. θ was then found to decrease to the original value (51°) when the benzene ratio increases to 100%. The contact angle, θ, for both benzene and HMDSO deposited films were found to increase with r.f. power. This signifies that the plasma polymerized organic films have substantially low surface energy as the r.f power increases. The corrosion resistance of aluminum alloy substrate both bare and covered with plasma polymerized thin films was carried out by potentiodynamic polarization measurements in standard 3.5 wt. % NaCl solution at room temperature. The results indicate that the benzene and HMDSO deposited films are suitable for protection of the aluminum substrate against corrosion. The changes in the processing parameters seem to have a strong influence on the film protective ability. Surface roughness of films deposited on aluminum alloy substrate was investigated using scanning electron microscopy (SEM). The SEM images indicate that the surface roughness of benzene deposited films increase with decreasing the benzene ratio. SEM images of benzene and HMDSO deposited films indicate that the surface roughness decreases with increasing r.f. power. Studying the above parameters indicate that the films produced are suitable for specific practical applications.

Keywords: Plasma polymerization, potentiodynamic test, Contact angle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2865
305 Block Activity in Metric Neural Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

The model of neural networks on the small-world topology, with metric (local and random connectivity) is investigated. The synaptic weights are random, driving the network towards a chaotic state for the neural activity. An ordered macroscopic neuron state is induced by a bias in the network connections. When the connections are mainly local, the network emulates a block-like structure. It is found that the topology and the bias compete to influence the network to evolve into a global or a block activity ordering, according to the initial conditions.

Keywords: Block attractor, random interaction, small world, spin glass.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1337
304 Comparison of Pore Space Features by Thin Sections and X-Ray Microtomography

Authors: H. Alves, J. T. Assis, M. Geraldes, I. Lima, R. T. Lopes

Abstract:

Microtomographic images and thin section (TS) images were analyzed and compared against some parameters of geological interest such as porosity and its distribution along the samples. The results show that microtomography (CT) analysis, although limited by its resolution, have some interesting information about the distribution of porosity (homogeneous or not) and can also quantify the connected and non-connected pores, i.e., total porosity. TS have no limitations concerning resolution, but are limited by the experimental data available in regards to a few glass sheets for analysis and also can give only information about the connected pores, i.e., effective porosity. Those two methods have their own virtues and flaws but when paired together they are able to complement one another, making for a more reliable and complete analysis.

Keywords: Microtomography, petrographical microscopy, sediments, thin sections.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
303 Mathematical Modelling for Separation of Binary Aqueous Solution using Hollow Fiber Reverse Osmosis Module

Authors: Anil Kumar, S. Deswal

Abstract:

The mathematical equation for Separation of the binary aqueous solution is developed by using the Spiegler- Kedem theory. The characteristics of a B-9 hollow fibre module of Du Pont are determined by using these equations and their results are compared with the experimental results of Ohya et al. The agreement between these results is found to be excellent.

Keywords: Binary aqueous solution, modeling, reverse osmosis module, Spiegler-Kedem theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1642
302 Application of Formyl-TIPPCu (II) for Temperature and Light Sensing

Authors: Dil Nawaz Khan, M. H. Sayyad, Muhammad Yaseen, Munawar Ali Munawar, Mukhtar Ali

Abstract:

Effect of temperature and light was investigated on a thin film of organic semiconductor formyl-TIPPCu(II) deposited on a glass substrate with preliminary evaporated gold electrodes. The electrical capacitance and resistance of the fabricated device were evaluated under the effect of temperature and light. The relative capacitance of the fabricated sensor increased by 4.3 times by rising temperature from 27 to 1870C, while under illumination up to 25000 lx, the capacitance of the Au/formyl-TIPPCu(II)/Au photo capacitive sensor increased continuously by 13.2 times as compared to dark conditions.

Keywords: formyl-TIPPCu(II), Organic semiconductor, Photocapacitance, Polarizability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
301 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: Expanding material, heavyweight concrete, self-healing performance, synthetic fiber.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1245
300 Thermal Characterization of Graphene Oxide-Epoxy Nanocomposites Produced by Aqueous Emulsion

Authors: H. A. Brandão Cordeiro, M. G. Bocardo, N. C. Penteado, V. T. de Moraes, S. M. Giampietri Lebrão, G. W. Lebrão

Abstract:

The present study desired to obtain a nanocomposite of epoxy resin reinforced with graphene oxide (OG), for aerospace application, produced by aqueous emulsion. It was obtained proof bodies with 0.00 wt%, 0.10 wt%, 0.25 wt% and 0.50 wt% in weight of nanoparticles, to check the influence of it in the final quality of the obtained product. The validation of the results was done by the application thermal characterization by differential scanning calorimetry (DSC). It was seen that the nanocomposite reinforced with 0.10 wt% of OG showed the best results, the average glass transition temperature, at 2 °C, compared to the pure resin.

Keywords: Aqueous emulsion, graphene, nanocomposites, thermal characterization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 851
299 The Study of Fabricating the Field Emission Lamps with Carbon nano-Materials

Authors: K. J. Chung, C.C.Chiang, Y.M. Liu, N. W. Pu, M. D. Ger

Abstract:

Fabrication and efficiency enhancement of non-mercury, high efficiency and green field emission lamps using carbon nano-materials such as carbon nanotubes as cathode field emitters was studied. Phosphor was coated on the ITO glass or metal substrates as the anode. The luminescence efficiency enhancement was carried out by upgrading the uniform of the emitters, improving electron and thermal conductivity of the phosphor and the optimization of the design of different cathode/anode configurations. After evaluation of the aforementioned parameters, the luminescence efficiency of the field emission lamps was raised.

Keywords: Field emission lamps, carbon nano-materials, luminescence efficiency

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1911
298 Simulation of Immiscibility Regions in Sodium Borosilicate Glasses

Authors: D. Aboutaleb, B. Safi

Abstract:

In this paper, sodium borosilicates glasses were prepared by melting in air. These heat-resistant transparent glasses have subjected subsequently isothermal treatments at different times, which have transformed them at opaque glass (milky white color). Such changes indicate that these glasses showed clearly phase separation (immiscibility). The immiscibility region in a sodium borosilicate ternary system was investigated in this work, i.e. to determine the regions from which some compositions can show phase separation. For this we went through the conditions of thermodynamic equilibrium, which were translated later by mathematical equations to find an approximate solution. The latter has been translated in a simulation which was established thereafter to find the immiscibility regions in this type of special glasses.

Keywords: Sodium borosilicate, heat-resistant, isothermal treatments, immiscibility, thermodynamics four.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
297 Investigation into the Bond between CFRP and Steel Plates

Authors: S. Fawzia, M. A. Karim

Abstract:

The use of externally bonded Carbon Fiber Reinforced Polymer (CFRP) reinforcement has proven to be an effective technique to strengthen steel structures. An experimental study on CFRP bonded steel plate with double strap joint has been conducted and specimens are tested under tensile loadings. An empirical model has been developed using stress-based approach to predict ultimate capacity of the CFRP bonded steel structure. The results from the model are comparable with the experimental result with a reasonable accuracy.

Keywords: Carbon fibre reinforced polymer, shear stress, slip, effective bond, steel structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
296 Ozone Decomposition over Silver-Loaded Perlite

Authors: Krassimir Genov, Vladimir Georgiev, Todor Batakliev, Dipak K. Sarker

Abstract:

The Bulgarian natural expanded mineral obtained from Bentonite AD perlite (A deposit of "The Broken Mountain" for perlite mining, near by the village of Vodenicharsko, in the municipality of Djebel), was loaded with silver (as ion form - Ag+ 2 and 5 wt% by the incipient wetness impregnation method), and as atomic silver - Ag0 using Tollen-s reagent (silver mirror reaction). Some physicochemical characterization of the samples are provided via: DC arc-AES, XRD, DR-IR and UV-VIS. The aim of this work was to obtain and test the silver-loaded catalyst for ozone decomposition. So the samples loaded with atomic silver show ca. 80% conversion of ozone 20 minutes after the reaction start. Then conversion decreases to ca. 20 % but stay stable during the prolongation of time.

Keywords: aluminum-silicates, Ag/perlite expanded glass, ozone decomposition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2268
295 An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

Authors: T. K. Mondal, N C Shivaprakash

Abstract:

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1688
294 Immobilization of Simulated High Level Nuclear Wastes with Li2O-CeO2-Fe2O3-P2O5 Glasses

Authors: Toshinori Okura, Naoya Yoshida

Abstract:

The leaching behavior and structure of Li2O-CeO2- Fe2O3-P2O5 glasses incorporated with simulated high level nuclear wastes (HLW) were studied. The leach rates of gross and each constituent element were determined from the total weight loss of the specimen and the leachate analyses by inductively coupled argon plasma spectroscopy (ICP). The gross leach rate of the 4.5Li2O- 9.7CeO2-34.7Fe2O3-51.5P2O5 glass waste form containing 45 mass% simulated HLW is of the order of 10

Keywords: FT-IR spectra, Leach rates, Li2O-CeO2-Fe2O3-P2O5 glasses, Nuclear waste immobilization, Thermal properties

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2084
293 Viability of Bradyrhizobium japanicum on Soybean Seeds Enhanced by Magnetite Nanoparticles during Desiccation

Authors: M. R. Ghalamboran, J. J. Ramsden

Abstract:

The aim of this study was to investigate whether magnetite nanoparticles affect the viability of Bradyrhizobium japanicum cells residing on the surface of soybean seeds during desiccation. Different concentrations of nanoparticles suspended in liquid medium, mixed with and adhering to Bradyrhizobium japanicum, were investigated at two temperatures, using both soybean seeds and glass beads as surrogates. Statistical design was a complete randomized block (CRB) in a factorial 6×2×2×6 experimental arrangement with four replications. The most important variable was the viability of Bradyrhizobium on the surface of the seeds. The nanoparticles increased Bradyrhizobium viability and inoculated seeds stored at low temperature had greater viability when nanoparticles had been added. At the optimum nanoparticle concentration, 50% bacterium viability on the seeds was retained after 5 days at 4ºC. Possible explanations for the observed effects are proposed.

Keywords: Bradyrhizobium japanicum, magnetitenanoparticles, soybean seed, viability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1290
292 Microfluidic Plasmonic Bio-Sensing of Exosomes by Using a Gold Nano-Island Platform

Authors: Srinivas Bathini, Duraichelvan Raju, Simona Badilescu, Muthukumaran Packirisamy

Abstract:

A bio-sensing method, based on the plasmonic property of gold nano-islands, has been developed for detection of exosomes in a clinical setting. The position of the gold plasmon band in the UV-Visible spectrum depends on the size and shape of gold nanoparticles as well as on the surrounding environment. By adsorbing various chemical entities, or binding them, the gold plasmon band will shift toward longer wavelengths and the shift is proportional to the concentration. Exosomes transport cargoes of molecules and genetic materials to proximal and distal cells. Presently, the standard method for their isolation and quantification from body fluids is by ultracentrifugation, not a practical method to be implemented in a clinical setting. Thus, a versatile and cutting-edge platform is required to selectively detect and isolate exosomes for further analysis at clinical level. The new sensing protocol, instead of antibodies, makes use of a specially synthesized polypeptide (Vn96), to capture and quantify the exosomes from different media, by binding the heat shock proteins from exosomes. The protocol has been established and optimized by using a glass substrate, in order to facilitate the next stage, namely the transfer of the protocol to a microfluidic environment. After each step of the protocol, the UV-Vis spectrum was recorded and the position of gold Localized Surface Plasmon Resonance (LSPR) band was measured. The sensing process was modelled, taking into account the characteristics of the nano-island structure, prepared by thermal convection and annealing. The optimal molar ratios of the most important chemical entities, involved in the detection of exosomes were calculated as well. Indeed, it was found that the results of the sensing process depend on the two major steps: the molar ratios of streptavidin to biotin-PEG-Vn96 and, the final step, the capture of exosomes by the biotin-PEG-Vn96 complex. The microfluidic device designed for sensing of exosomes consists of a glass substrate, sealed by a PDMS layer that contains the channel and a collecting chamber. In the device, the solutions of linker, cross-linker, etc., are pumped over the gold nano-islands and an Ocean Optics spectrometer is used to measure the position of the Au plasmon band at each step of the sensing. The experiments have shown that the shift of the Au LSPR band is proportional to the concentration of exosomes and, thereby, exosomes can be accurately quantified. An important advantage of the method is the ability to discriminate between exosomes having different origins.

Keywords: Exosomes, gold nano-islands, microfluidics, plasmonic biosensing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1466
291 Separate Collection System of Recyclables and Biowaste Treatment and Utilization in Metropolitan Area Finland

Authors: Petri Kouvo, Aino Kainulainen, Kimmo Koivunen

Abstract:

Separate collection system for recyclable wastes in the Helsinki region was ranked second best of European capitals. The collection system includes paper, cardboard, glass, metals and biowaste. Residual waste is collected and used in energy production. The collection system excluding paper is managed by the Helsinki Region Environmental Services HSY, a public organization owned by four municipalities (Helsinki, Espoo, Kauniainen and Vantaa). Paper collection is handled by the producer responsibility scheme. The efficiency of the collection system in the Helsinki region relies on a good coverage of door-to-door-collection. All properties with 10 or more dwelling units are required to source separate biowaste and cardboard. This covers about 75% of the population of the area. The obligation is extended to glass and metal in properties with 20 or more dwelling units. Other success factors include public awareness campaigns and a fee system that encourages recycling. As a result of waste management regulations for source separation of recyclables and biowaste, nearly 50 percent of recycling rate of household waste has been reached. For households and small and medium size enterprises, there is a sorting station fleet of five stations available. More than 50 percent of wastes received at sorting stations is utilized as material. The separate collection of plastic packaging in Finland will begin in 2016 within the producer responsibility scheme. HSY started supplementing the national bring point system with door-to-door-collection and pilot operations will begin in spring 2016. The result of plastic packages pilot project has been encouraging. Until the end of 2016, over 3500 apartment buildings have been joined the piloting, and more than 1800 tons of plastic packages have been collected separately. In the summer 2015 a novel partial flow digestion process combining digestion and tunnel composting was adopted for source separated household and commercial biowaste management. The product gas form digestion process is converted in to heat and electricity in piston engine and organic Rankine cycle process with very high overall efficiency. This paper describes the efficient collection system and discusses key success factors as well as main obstacles and lessons learned as well as the partial flow process for biowaste management.

Keywords: Biowaste, HSY, MSW, plastic packages, recycling, separate collection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 951
290 Study of Biocomposites Based of Poly(Lactic Acid) and Olive Husk Flour

Authors: Samra Isadounene, Amar Boukerrou, Dalila Hammiche

Abstract:

In this work, the composites were prepared with poly(lactic acid) (PLA) and olive husk flour (OHF) with different percentages (10, 20 and 30%) using extrusion method followed by injection molding. The morphological, mechanical properties and thermal behavior of composites were investigated. Tensile strength and elongation at break of composites showed a decreasing trend with increasing fiber content. On the other hand, Young modulus and storage modulus were increased. The addition of OHF resulted in a decrease in thermal stability of composites. The presence of OHF led to an increase in percentage of crystallinity (Xc) of PLA matrix.

Keywords: Biopolymers, composites, mechanical properties, poly(lactic acid).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1005
289 A High-Crosstalk Silicon Photonic Arrayed Waveguide Grating

Authors: Qing Fang, Lianxi Jia, Junfeng Song, Chao Li, Xianshu Luo, Mingbin Yu, Guoqiang Lo

Abstract:

In this paper, we demonstrated a 1 × 4 silicon photonic cascaded arrayed waveguide grating, which is fabricated on a SOI wafer with a 220 nm top Si layer and a 2µm buried oxide layer. The measured on-chip transmission loss of this cascaded arrayed waveguide grating is ~ 5.6 dB, including the fiber-to-waveguide coupling loss. The adjacent crosstalk is 33.2 dB. Compared to the normal single silicon photonic arrayed waveguide grating with a crosstalk of ~ 12.5 dB, the crosstalk of this device has been dramatically increased.

Keywords: Silicon photonic, arrayed waveguide grating, high-crosstalk, cascaded structure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1808
288 Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites

Authors: Priyankar Pratim Deka, Sutanu Samanta

Abstract:

This paper describes the development of new class of epoxy based rice husk filled jute reinforced composites. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylenetetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases.

Keywords: Jute, mechanical characterization, natural fiber, rice husk.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063