
Training Radial Basis Function Networks with

Differential Evolution

Bing Yu , Xingshi He

Abstract In this paper, Differential Evolution (DE) algorithm, a

new promising evolutionary algorithm, is proposed to train Radial

Basis Function (RBF) network related to automatic configuration of

network architecture. Classification tasks on data sets: Iris, Wine,

New-thyroid, and Glass are conducted to measure the performance of

neural networks. Compared with a standard RBF training algorithm

in Matlab neural network toolbox, DE achieves more rational

architecture for RBF networks. The resulting networks hence obtain

strong generalization abilities.

Keywords differential evolution, neural network, Rbf function

I. INTRODUCTION1

ADIAL Basis Function (RBF) networks were introduced

into the neural network literature by Broomhead and

Lowe [1], which are motivated by observation on the local

response in biologic neurons. Due to their better

approximation capabilities, simpler network structures and

faster learning algorithms, RBF networks have been widely

applied in many science and engineering fields. RBF network

is three layers feedback network, where each hidden unit

implements a radial activation function and each output unit

implements a weighted sum of hidden units’ outputs. Its

training procedure is usually divided into two stages: First, the

centers and widths of the hidden layer are determined by

clustering algorithms such as K-means [2], vector

quantizations [3], decision trees [4], and self-organizing

feature maps [5]. Second, the weights connecting the hidden

layer with the output layer are determined by Singular Value

Decomposition (SVD) or Least Mean Squared (LMS)

algorithms. The problem of selecting the appropriate number

of basis functions remains a critical issue for RBF networks.

The number of basis functions controls the complexity and the

generalization ability of RBF networks. RBF networks with

too few basis functions cannot fit the training data adequately

due to limited flexibility. On the other hand, those with too

Bing Yu , the Department of Mathematics, Xian University of Engineering

Science and Technology, Xian

710048,P.R.China(e-mail:yubingxa@hotmail.com)

Xingshi He, the Department of Mathematics, Xian University of Engineering

Science and Technology, Xian 710048,P.R.China

many basis functions yield poor generalization abilities since

they are too flexible and fit the noise in the training data. The

methods mentioned above require designers to fix the

structure of networks in advance according to prior knowledge.

However it is difficult for designers to achieve optimal

architecture. Genetic algorithm, the most popular evolutionary

algorithms, has been employed to automatically evolve the

structure of neural network [6]. Training technique can be

formulated as an optimization problem, which includes the

network structure into a set of variables that are used to

minimize the prediction error. Differential Evolution (DE)

algorithm, an emerging evolutionary computation technique,

was first introduced by Rainer Storn and Kenneth Price in

1997[7]. DE possesses similar attractive features of genetic

algorithms such as independence from gradient information of

the objective function, the ability to solve complex nonlinear

high dimensional problems. Furthermore, they can achieve

faster convergence speed and require fewer parameters to be

adjusted. In this paper, DE algorithm is adopted to

auto-configure the structure of RBF network and obtain the

model parameters according to given input-output examples.

II. RBF TRAINING ALGORITHM DESIGN

The architecture of RBF network consists of three layers

that have entirely different roles. The input layer, a set of

source nodes, connects the network to the environment. The

second layer consists of a set basis function units that carry out

a nonlinear transformation from the input space to the hidden

space. Usually, nonlinear transformation is based on Gaussian

function as follows:

2

2

|| ||

2
() exp()i

i

x u

iz x (1)

Where ||…|| represents Euclidean norm; ,i iu and iz are

the center, the width and the output of the i-th hidden unit,

respectively. The output layer, a set of summation units,

supplies the response of the network.

In this paper, we formulated the training technique as an

optimization problem and employed DE algorithm to resolve

it.

R

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3705International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

51
9.

pd
f

DE algorithm is a population-based heuristic search

procedure. Start with NP individuals as solution vectors

randomly, use mutation, crossing and selection operation

through encoding, and then get the best individual as the

problem’s answer. By experimentation, we recently noticed

that DE has exceptional performance compared to other search

heuristics in numerical optimization. Surprisingly, DE requires

hardly any parameter tuning and works very reliably with

excellent overall results over a wide set of benchmark and

real-world problems, such as partitioned data clustering [8],

parameter identification of system models in engineering [9]

and flexible ligand docking in bioinformatics [10].

When adopting DE to train RBF neural networks, we

must resolve two problems: encoding neural network

architecture and designing fitness function.

1) Encoding Neural Network Architecture

The aim of training is to determine the number of hidden

units, centers and widths of corresponding hidden units, and

the weights that connect hidden units and output units. The

choice of an efficient representation for network architecture

is one of the most important issues in training. If we encode all

these parameters into a individual, the length of the individual

is too long and hence the search space is too large, which

results in a very slow convergence rate. Since the performance

of RBF networks mainly depends on the centers of hidden

units, we just encode the centers into a individual for

stochastic search. Then the widths and weights are determined

by heuristic methods and analytic methods, respectively. DE

shows a strong ability to deal with real-valued optimization

problem. Moreover, centers are also real values. In order to

fully exploit potential of DE, real-valued flags are employed,

which indicate whether or not the corresponding hidden units

are involved in networks. Therefore, the position of a

individual is represented by concatenation of flags and centers

of hidden units. Suppose the max number of hidden units is set

to hmax, thus the structure of the individual includes two parts

as follows:

Center existence array Center vector array

Flag

1

Flag2 … Flag hmax C1 C2 … Chmax

Fig. 1 Structure of an individual

Flagi indicates whether or not the i-th hidden unit is involved

into the network. If Flagi > 0, the i-th hidden unit is included

in the network. Otherwise the i-th hidden unit is removed from

the network. In such a way, individual can be interpreted to

networks with variable number of hidden units though they

have a fixed length. Here, different individual correspond to

networks with different number of hidden units.

2) Designing Fitness Function

The fitness function guides the evolution process. Here a

small fitness denotes a good individual. RBF networks with

good configuration should have less hidden units and high

prediction accuracy. Therefore, fitness function takes into

account two factors: mean squared error between network

outputs and desired outputs (MSE), and the complexity of

networks (ComNN).

Fitness=MSE+k*ComNN (2)

Where k is a constant which balances the impact

between MSE and ComNN

Calculating MSE . After an individual is interpreted

into a neural network according to Section 2.1, the number of

hidden units and their centers are obtained. Then the width of

the i-th hidden unit is determined by the following heuristic

formula:

2 2

1

1
|| || (3)

h

i i j

j

Center Center
h

Where h is the number of hidden units that are involved in

the network.

Once the centers and the widths are fixed, the task of

determining weights reduces to solving a simple linear system.

An analytical non-iterative Single Value Decomposition (SVD)

method is adopted. The resulting network is measured on the

training set where PN input-target vector pairs (patterns)

are given. The MSE is calculated as the following:

2

1

1
MSE= || || (4)

PN

PN

p p

p

t o

Where
pt and

po are the desired output and network

output for pattern p respectively.

Calculating ComNN

hidden

maxhidden

N
ComNN= (5)

N

Where hiddenN is the number of hidden units involved in

networks; maxhiddenN is predefined the max number of hidden

units.

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3706International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

51
9.

pd
f

III. IMPLEMENTATION WITH DE

Firstly, we get NP individuals indicating the RBF

network’ structure randomly, the individuals have the form:

i,G 1,i,G 2,i,G D,i,Gx = [x , x , . . . x] i = 1, 2, . . . ,NP

(Where G is the generation number and D is the

problem’s dimension)

In each generation, for individual ix , we using mutation

operation and get the vector iv called donor vector through

formula 6

i r1,G r2,G r3,G= x + F*(x -x) (6)v

(Where the mutation factor F is a constant from [0, 2]

and the three vectors
r1,Gx ,

r2,Gx and
r3,Gx are selected

randomly such that the indices 1 2 3i,r ,r and r are distinct

from1, 2, . . . ,NP)

Secondly, we use crossing operation and get the trail

vector iu through formula 7.

, , 1 j,i rand

, , 1

, , 1 j,i rand

 rand CR or j=I
 (7)

 rand CR and j I

 i=1,2,...,NP;j=1,2,...,D

j i G

j i G

j i G

v if
u

x f

j,i randrand ~ [0,1], IU is a random integer from [1,

2,…, D], CR is a user defined number between [0,1] which

called crossing factor.

 Lastly, we use selection operation and get the target

vector , 1i Gx is compared with the trail vector , 1i Gu and

the one with the lowest function value is admitted to the next

generation through formula 8. Mutation, crossing and

selection continue until some stopping criterion is reached.

, 1 , 1 ,

, 1

,

 f() ()
 1,2,..., (8)

otherwise

i G i G i G

i G

i G

u if u f x
x i NP

x

The pseudo-code is as follows:

Begin

G=1;

Initialize the NP individuals , : 1, 2,...,i GX i N

randomly;

For G=1 to Gmax do

For i =1 to NP do

Mutation step: for each individual ,i GX , get the donor

vector , 1i GV according to formula 6;

Crossing step: get the trail vector , 1i GU according to

formula 7 by vector
,i GX and

, 1i GV ;

Compute , ,,i X i UJ J according to formula 2 by

vector ,i GX , , 1i GU and train datasets;

Selection step: get the target vector , 1i GX according

to formula 8;

End for

G=G+1;

End for

End

IV. EXPERIMENTS

The data sets used in this section were obtained from the

UCI repository of Machine Learning databases [11]. Two

training algorithm were compared. One was DE algorithm

whose parameters were set as follows: mutation factor F =0.3,

crossing factor CR=0.7, Max iterations were different with

different data sets. The other was newrb routine that was

included in Matlab neural networks toolbox as standard

training algorithm for RBF neural network. The function

newrb iteratively creates a radial basis network one neuron at

a time. Neurons are added to the network until the

sum-squared error falls beneath an error goal or the maximum

number of neurons has been reached. All the experiments

were conducted 20 runs. In each experiment, each data set was

randomly divided into two parts: 60% as training sets and 40%

as test sets. TestCorrect referred to mean correct classification

rate averaged over 20 runs for the test sets, respectively. The

information of data sets and results of the two algorithms were

listed in Table 1.

V. CONCLUSIONS

In this paper, DE algorithm, a population-based iterative

global optimization, was implemented to train RBF networks.

The method of encoding a RBF network into an individual

was given, where only the centers of hidden units were

encoded. In each iteration, each individual determined a kind

of configuration for the centers of hidden units, according to

which the widths of hidden units were calculated by heuristic

methods, and connection weights between hidden layer and

output layer were obtained by SVD. Consequently, a RBF

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3707International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

51
9.

pd
f

network was constructed. Then it was performed on training

sets to evaluate fitness for the individual. Fitness function

takes into account not only MSE between network outputs and

desired outputs, but also the number of hidden units, thus the

resulting networks can alleviate over-fitting. Experimental

results show that DE algorithm achieves more rational

architecture for RBF networks and the resulting networks

hence obtain strong generalization abilities at the cost of a

little longer time to train networks.

TABLE I

THE INFORMATION OF DATA SETS, PARAMETERS AND RESULTS

OF THE TWO ALGORITHMS FOR DIFFERENT DATASETS

Iris Wine New-thyroid Glass

of patterns 150 178 215 214

of input units 4 13 5 9

of output units 3 3 3 7

Max Iteration (DE) 100 150 200 200

of hidden (DE) 6 20 15 27

Test Correct (DE) 0.9733 0.9631 0.9444 0.8620

of hidden (newrb) 9 58 26 87

Test Correct (newrb) 0.7937 0.9283 0.5188 0.7857

REFERENCES

[1] Matysiak, Broomhead, D., Lowe, D.: Multivariable Functional

Interpolation and Adaptive Networks. Complex Systems (1988)

321-355.

[2] Moody, J., Darken, C.: Fast Learning Networks of Locally-Tuned

Processing Units. Neural Computation (1991) 579-588.

[3] Vogt, M.: Combination of Radial Basis Function Neural Networks with

Optimized Learning Vector Quantization. IEEE International

Conference on Neural Networks (1993) 1841-1846.

[4] Kubat, M.: Decision Trees Can Initialize Radial-Basis Function

Networks. IEEE Transactions on Neural Networks (1998) 813-821.

[5] Robert, J., Hewlett L.C.J.: Radial Basis Function Networks 2: New

Advances in Design (2001).

[6] Yao, X.: Evolving Artificial Neural Networks. Proceedings of the IEEE

(1999) 87(9) 1423-1447.

[7] Rainer Storn, Kenneth Price: Differential Evolution: A simple and

efficient adaptive scheme for global optimization over continuous spaces.

Global Optimization, 11, 1997 341-359.

[8] PATERLINI, S., AND KRINK, T. High performance clustering using

differential evolution. In Proceedings of the Six Congress on

Evolutionary Computation (CEC-2004), IEEE Press, Piscataway, NJ,

USA.

[9] THOMSEN, R. Flexible ligand docking using differential evolution. In

Proceedings of the Fifth Congress on Evolutionary Computation

(CEC-2003) (2003), vol. 4, IEEE Press, Piscataway, NJ, USA, pp.

2354–2361.

[10] URSEM, R. K., AND VADSTRUP, P. Parameter identification of

induction motors using differential evolution. In Proceedings of the Fifth

Congress on Evolutionary Computation (CEC-2003) (2003), IEEE Press,

Piscataway, NJ, USA, pp. 790–796.

[11] Blake, C.,Keogh,E.,Merz,C.J.:UCI Repository of Machine Learning

Databases(1998)www.ics.uci.edu/mlearn/MLRepository.html

World Academy of Science, Engineering and Technology
International Journal of Computer and Information Engineering

 Vol:1, No:11, 2007

3708International Scholarly and Scientific Research & Innovation 1(11) 2007 ISNI:0000000091950263

O
pe

n
Sc

ie
nc

e
In

de
x,

 C
om

pu
te

r
an

d
In

fo
rm

at
io

n
E

ng
in

ee
ri

ng
 V

ol
:1

, N
o:

11
, 2

00
7

pu
bl

ic
at

io
ns

.w
as

et
.o

rg
/4

51
9.

pd
f

