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Abstract In this paper, Differential Evolution (DE) algorithm, a 

new promising evolutionary algorithm, is proposed to train Radial 

Basis Function (RBF) network related to automatic configuration of 

network architecture. Classification tasks on data sets: Iris, Wine, 

New-thyroid, and Glass are conducted to measure the performance of 

neural networks. Compared with a standard RBF training algorithm 

in Matlab neural network toolbox, DE achieves more rational 

architecture for RBF networks. The resulting networks hence obtain 

strong generalization abilities. 
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I. INTRODUCTION1

ADIAL Basis Function (RBF) networks were introduced 

into the neural network literature by Broomhead and 

Lowe [1], which are motivated by observation on the local 

response in biologic neurons. Due to their better 

approximation capabilities, simpler network structures and 

faster learning algorithms, RBF networks have been widely 

applied in many science and engineering fields. RBF network 

is three layers feedback network, where each hidden unit 

implements a radial activation function and each output unit 

implements a weighted sum of hidden units’ outputs. Its 

training procedure is usually divided into two stages: First, the 

centers and widths of the hidden layer are determined by 

clustering algorithms such as K-means [2], vector 

quantizations [3], decision trees [4], and self-organizing 

feature maps [5]. Second, the weights connecting the hidden 

layer with the output layer are determined by Singular Value 

Decomposition (SVD) or Least Mean Squared (LMS) 

algorithms. The problem of selecting the appropriate number 

of basis functions remains a critical issue for RBF networks. 

The number of basis functions controls the complexity and the 

generalization ability of RBF networks. RBF networks with 

too few basis functions cannot fit the training data adequately 

due to limited flexibility. On the other hand, those with too 
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many basis functions yield poor generalization abilities since 

they are too flexible and fit the noise in the training data. The 

methods mentioned above require designers to fix the 

structure of networks in advance according to prior knowledge. 

However it is difficult for designers to achieve optimal 

architecture. Genetic algorithm, the most popular evolutionary 

algorithms, has been employed to automatically evolve the 

structure of neural network [6]. Training technique can be 

formulated as an optimization problem, which includes the 

network structure into a set of variables that are used to 

minimize the prediction error. Differential Evolution (DE) 

algorithm, an emerging evolutionary computation technique, 

was first introduced by Rainer Storn and Kenneth Price in 

1997[7]. DE possesses similar attractive features of genetic 

algorithms such as independence from gradient information of 

the objective function, the ability to solve complex nonlinear 

high dimensional problems. Furthermore, they can achieve 

faster convergence speed and require fewer parameters to be 

adjusted. In this paper, DE algorithm is adopted to 

auto-configure the structure of RBF network and obtain the 

model parameters according to given input-output examples. 

II. RBF TRAINING ALGORITHM DESIGN

The architecture of RBF network consists of three layers 

that have entirely different roles. The input layer, a set of 

source nodes, connects the network to the environment. The 

second layer consists of a set basis function units that carry out 

a nonlinear transformation from the input space to the hidden 

space. Usually, nonlinear transformation is based on Gaussian 

function as follows: 
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Where ||…|| represents Euclidean norm; ,i iu and iz  are 

the center, the width and the output of the i-th hidden unit, 

respectively. The output layer, a set of summation units, 

supplies the response of the network. 

In this paper, we formulated the training technique as an 

optimization problem and employed DE algorithm to resolve 

it.  
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DE algorithm is a population-based heuristic search 

procedure. Start with NP individuals as solution vectors 

randomly, use mutation, crossing and selection operation 

through encoding, and then get the best individual as the 

problem’s answer. By experimentation, we recently noticed 

that DE has exceptional performance compared to other search 

heuristics in numerical optimization. Surprisingly, DE requires 

hardly any parameter tuning and works very reliably with 

excellent overall results over a wide set of benchmark and 

real-world problems, such as partitioned data clustering [8], 

parameter identification of system models in engineering [9] 

and flexible ligand docking in bioinformatics [10]. 

When adopting DE to train RBF neural networks, we 

must resolve two problems: encoding neural network 

architecture and designing fitness function. 

1) Encoding Neural Network Architecture 

The aim of training is to determine the number of hidden 

units, centers and widths of corresponding hidden units, and 

the weights that connect hidden units and output units. The 

choice of an efficient representation for network architecture 

is one of the most important issues in training. If we encode all 

these parameters into a individual, the length of the individual 

is too long and hence the search space is too large, which 

results in a very slow convergence rate. Since the performance 

of RBF networks mainly depends on the centers of hidden 

units, we just encode the centers into a individual for 

stochastic search. Then the widths and weights are determined 

by heuristic methods and analytic methods, respectively. DE 

shows a strong ability to deal with real-valued optimization 

problem. Moreover, centers are also real values. In order to 

fully exploit potential of DE, real-valued flags are employed, 

which indicate whether or not the corresponding hidden units 

are involved in networks. Therefore, the position of a 

individual is represented by concatenation of flags and centers 

of hidden units. Suppose the max number of hidden units is set 

to hmax, thus the structure of the individual includes two parts 

as follows: 

Center existence array Center vector array 

Flag

1

Flag2 … Flag hmax C1 C2 … Chmax

Fig. 1 Structure of an individual 

Flagi indicates whether or not the i-th hidden unit is involved 

into the network. If Flagi > 0, the i-th hidden unit is included 

in the network. Otherwise the i-th hidden unit is removed from 

the network. In such a way, individual can be interpreted to 

networks with variable number of hidden units though they 

have a fixed length. Here, different individual correspond to 

networks with different number of hidden units. 

2) Designing Fitness Function 

The fitness function guides the evolution process. Here a 

small fitness denotes a good individual. RBF networks with 

good configuration should have less hidden units and high 

prediction accuracy. Therefore, fitness function takes into 

account two factors: mean squared error between network 

outputs and desired outputs (MSE), and the complexity of 

networks (ComNN).

Fitness=MSE+k*ComNN           (2)

Where k is a constant which balances the impact 

between MSE and ComNN

Calculating MSE . After an individual is interpreted 

into a neural network according to Section 2.1, the number of 

hidden units and their centers are obtained. Then the width of 

the i-th hidden unit is determined by the following heuristic 

formula: 

2 2
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Where h is the number of hidden units that are involved in 

the network. 

Once the centers and the widths are fixed, the task of 

determining weights reduces to solving a simple linear system. 

An analytical non-iterative Single Value Decomposition (SVD) 

method is adopted. The resulting network is measured on the 

training set where PN input-target vector pairs (patterns) 

are given. The MSE is calculated as the following: 

2
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Where
pt  and 

po  are the desired output and network 

output for pattern p respectively. 

Calculating ComNN

hidden

maxhidden

N
ComNN=               (5) 

N

Where hiddenN  is the number of hidden units involved in 

networks; maxhiddenN is predefined the max number of hidden 

units. 
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III. IMPLEMENTATION WITH DE

Firstly, we get NP individuals indicating the RBF 

network’ structure randomly, the individuals have the form: 

i,G 1,i,G 2,i,G D,i,Gx  = [x , x , . . . x ]    i = 1, 2, . . . ,NP

(Where G  is the generation number and D  is the 

problem’s dimension) 

In each generation, for individual ix , we using mutation 

operation and get the vector iv called donor vector through 

formula 6 

i r1,G r2,G r3,G= x  + F*(x -x )          (6)v

(Where the mutation factor F  is a constant from [0, 2] 

and the three vectors
r1,Gx ,

r2,Gx  and 
r3,Gx are selected 

randomly such that the indices 1 2 3i,r ,r  and r are distinct 

from1, 2, . . . ,NP )

Secondly, we use crossing operation and get the trail 

vector iu through formula 7.  

, , 1 j,i rand

, , 1

, , 1 j,i rand

 rand CR or j=I
     (7)

 rand CR and j I

                  i=1,2,...,NP;j=1,2,...,D

j i G

j i G

j i G

v if
u

x f

j,i randrand ~ [0,1], IU is a random integer from [1, 

2,…, D], CR is a user defined number between [0,1] which 

called crossing factor. 

 Lastly, we use selection operation and get the target 

vector , 1i Gx  is compared with the trail vector , 1i Gu and 

the one with the lowest function value is admitted to the next 

generation through formula 8. Mutation, crossing and 

selection continue until some stopping criterion is reached. 

, 1 , 1 ,

, 1

,

 f( ) ( )
   1,2,...,     (8)

otherwise

i G i G i G

i G

i G

u if u f x
x i NP

x

The pseudo-code is as follows: 

Begin 

G=1;

Initialize the NP individuals , : 1, 2,...,i GX i N

randomly; 

For G=1 to Gmax do 

For i =1 to NP do 

Mutation step: for each individual ,i GX , get the donor 

vector , 1i GV according to formula 6; 

Crossing step: get the trail vector , 1i GU according to 

formula 7 by vector 
,i GX and

, 1i GV ;

Compute , ,,i X i UJ J according to formula 2 by 

vector ,i GX , , 1i GU and train datasets; 

Selection step: get the target vector , 1i GX  according 

to formula 8; 

End for 

G=G+1; 

End for 

End

IV. EXPERIMENTS

The data sets used in this section were obtained from the 

UCI repository of Machine Learning databases [11]. Two 

training algorithm were compared. One was DE algorithm 

whose parameters were set as follows: mutation factor F =0.3, 

crossing factor CR=0.7, Max iterations were different with 

different data sets. The other was newrb routine that was 

included in Matlab neural networks toolbox as standard 

training algorithm for RBF neural network. The function 

newrb iteratively creates a radial basis network one neuron at 

a time. Neurons are added to the network until the 

sum-squared error falls beneath an error goal or the maximum 

number of neurons has been reached. All the experiments 

were conducted 20 runs. In each experiment, each data set was 

randomly divided into two parts: 60% as training sets and 40% 

as test sets. TestCorrect referred to mean correct classification 

rate averaged over 20 runs for the test sets, respectively. The 

information of data sets and results of the two algorithms were 

listed in Table 1. 

V. CONCLUSIONS

In this paper, DE algorithm, a population-based iterative 

global optimization, was implemented to train RBF networks. 

The method of encoding a RBF network into an individual 

was given, where only the centers of hidden units were 

encoded. In each iteration, each individual determined a kind 

of configuration for the centers of hidden units, according to 

which the widths of hidden units were calculated by heuristic 

methods, and connection weights between hidden layer and 

output layer were obtained by SVD. Consequently, a RBF 
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network was constructed. Then it was performed on training 

sets to evaluate fitness for the individual. Fitness function 

takes into account not only MSE between network outputs and 

desired outputs, but also the number of hidden units, thus the 

resulting networks can alleviate over-fitting. Experimental 

results show that DE algorithm achieves more rational 

architecture for RBF networks and the resulting networks 

hence obtain strong generalization abilities at the cost of a 

little longer time to train networks. 

TABLE I 

THE INFORMATION OF DATA SETS, PARAMETERS AND RESULTS 

OF THE TWO ALGORITHMS FOR DIFFERENT DATASETS

Iris   Wine   New-thyroid   Glass 

# of patterns       150    178       215       214 

# of input units      4     13        5          9 

# of output units     3      3        3          7 

Max Iteration (DE)   100   150      200        200 

# of hidden (DE)     6     20        15        27 

Test Correct (DE)   0.9733  0.9631   0.9444   0.8620 

# of hidden (newrb)   9     58        26        87 

Test Correct (newrb) 0.7937  0.9283   0.5188   0.7857 
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