An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
An Automated High Pressure Differential Thermal Analysis System for Phase Transformation Studies

Authors: T. K. Mondal, N C Shivaprakash

Abstract:

A piston cylinder based high pressure differential thermal analyzer system is developed to investigate phase transformations, melting, glass transitions, crystallization behavior of inorganic materials, glassy systems etc., at ambient to 4 GPa and at room temperature to 1073 K. The pressure is calibrated by the phase transition of bismuth and ytterbium and temperature is calibrated by using thermocouple data chart. The system developed is calibrated using benzoic acid, ammonium nitrate and it has a pressure and temperature control of ± 8.9 x 10 -4 GPa , ± 2 K respectively. The phase transition of Asx Te100-x chalcogenides, ferrous oxide and strontium boride are studied using the indigenously developed system.

Keywords: double stage crystallization, Phase transition, Quasi hydrostatic, Rigidity percolation

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1329094

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690

References:


[1] Turkevych I., Franc J., Grill R., Hoschl P., Journal of electronic Materials 30, 2004.
[2] Ivanova Z.G., Cernoskova E. Thermochimica Acta 411 (2004) 177.
[3] Abe Akihiro., Hiejima Toshihiro., Takeda Takanori., Nakafuku Chitoshi. Polymer 44 (2003) 3117.
[4] Wendlandt W.W. Thermal analysis. 3rd edition, John Wiley & Sons, New york, 1985.
[5] Brunskill H.I., Schmid G.M. Thrmochim Acta 9(1981) 351.
[6] Cohen L.H., Klement W., Kennedy G.C. J Phys Chem Solids 27 (1966) 179.
[7] Kuballa M., Schneider G.M. "Ber. Bunsenges. Phys. Chem" 27(1966) 179.
[8] Bousquet J., Blanchard J.M., Bonnetot B., Claudy P. Bull Soc Chim. Er (1969) 1841.
[9] Williams J.R., Wendlandt W.W. Thermochim. Acta 7 (1973) 269.
[10] Locke C.E. Proceedings of the Third Toronto Symposium on Thermal Analysis, H G McAdie (ed), Chemical Institute of Canada, Toronto (1969) 251.
[11] Jayaraman A., Hutgon A.R., McFee A.H., Coriell A.S., Maines R.G. Rev Sci Instrum 38(1967) 44.
[12] Godovikov A.A., Sminov S.A., Malinovskii I.Yu., Ran E.N., Pankov M.S., Rosiniskii A., Tokmin B.P. Instrum Exp Tech 14 (1971) 1769.
[13] Savill N.G., Wall W.F. J. Sci. Instrum 44 (1967) 839.
[14] Angelika Bartelt., Gerhard M.Schneider. Rev of Sci Instrum 60 (1989) 926.
[15] Mondal T.K., Murugavel S., Asokan S. Rev of Sci Instrum 70 (1998) 165.
[16] Pandey and Shah. Machine Design. Tata McGraw Hill,192,1990.
[17] Timoshenko Stephen. Strength of materials Part- 2 Advanced Theory and Problems. CBS Publishers & Distributors, 1986.
[18] Anandkumar V. Advances in High Pressure Science and Technology, Proceedings of the IV NCHST, sept 11 -13, IGCAR Kalpakkam 1 (1997).
[19] ANSYS Structural Analysis Procedure Guide. Release 5.4 South Pointe, 275, Technology Drive, Canonsburg PA.
[20] Herrmann Michael. J., Engel Walter. Journal of Propellants Explosives Pyrotechniques 22(1997) 141-147.
[21] Titus S.S.K., Asokan S., Mondal T.K., Gopal E.S.R. Solid State communication 89, 1 (1994) 23-26.
[22] Mondal T. K., Shivaprakash N. C., Rajanna K. Journal of High Pressure Science and Technology 14 (2004) 86.
[23] Duncan M.Price., Mark Jarratt. Thrmochimica Acta (2002) 392.
[24] Kocherzhinskii Yurii.A., Vasilenko Vladimir.I., Vladimir Z. Turkevich., Vladimir Z. High Temperature - High Pressure 24(1992) 533-535.
[25] www.osti.gov/energycitations/product.biblio.jsp