Search results for: Flow Regime Transition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2740

Search results for: Flow Regime Transition

2320 Injection Forging of Splines Using Numerical and Experimental Study

Authors: M.Zadshakoyan, H.Jafarzadeh, E.Abdi Sobbouhi

Abstract:

Injection forging is a Nett-shape manufacturing process in which one or two punches move axially causing a radial flow into a die cavity in a form which is prescribed by the exitgeometry, such as pulley, flanges, gears and splines on a shaft. This paper presents an experimental and numerical study of the injection forging of splines in terms of load requirement and material flow. Three dimensional finite element analyses are used to investigate the effect of some important parameters in this process. The experiment has been carried out using solid commercial lead billets with two different billet diameters and four different dies.

Keywords: Injection forging, splines, material flow, FEM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
2319 Retrofitting of Bridge Piers against the Scour Damages: Case Study of the Marand-Soofian Route Bridge

Authors: Shatirah Akib, Hossein Basser, Hojat Karami, Afshin Jahangirzadeh

Abstract:

Bridge piers which are constructed in the track of high water rivers cause some variations in the flow patterns. This variation mostly is a result of the changes in river sections. Decreasing the river section, bridge piers significantly impress the flow patterns. Once the flow approaches the piers, the stream lines change their order, causing the appearance of different flow patterns around the bridge piers. New flow patterns are created following the geometry and the other technical characteristics of the piers. One of the most significant consequences of this event is the scour generated around the bridge piers which threatens the safety of the structure. In order to determine the properties of scour holes, to find maximum depth of the scour is an important factor. In this manuscript a numerical simulation of the scour around Marand-Soofian route bridge piers has been carried out via SSIIM 2.0 Software and the amount of maximum scour has been achieved subsequently. Eventually the methods for retrofitting of bridge piers against scours and also the methods for decreasing the amount of scour have been offered.

Keywords: Scour, Bridge pier, numerical simulation, SSIIM 2.0.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2766
2318 Characterization and Modeling of Packet Loss of a VoIP Communication

Authors: L. Estrada, D. Torres, H. Toral

Abstract:

In this work, a characterization and modeling of packet loss of a Voice over Internet Protocol (VoIP) communication is developed. The distributions of the number of consecutive received and lost packets (namely gap and burst) are modeled from the transition probabilities of two-state and four-state model. Measurements show that both models describe adequately the burst distribution, but the decay of gap distribution for non-homogeneous losses is better fit by the four-state model. The respective probabilities of transition between states for each model were estimated with a proposed algorithm from a set of monitored VoIP calls in order to obtain representative minimum, maximum and average values for both models.

Keywords: Packet loss, gap and burst distribution, Markovchain, VoIP measurements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
2317 Hemodynamic Characteristics in the Human Carotid Artery Model Induced by Blood-Arterial Wall Interactions

Authors: Taewon Seo

Abstract:

The characteristics of physiological blood flow in human carotid arterial bifurcation model have been numerically studied using a fully coupled fluid-structure interaction (FSI) analysis. This computational model with the fluid-structure interaction is constructed to investigate the flow characteristics and wall shear stress in the carotid artery. As the flow begins to decelerate after the peak flow, a large recirculation zone develops at the non-divider wall of both internal carotid artery (ICA) and external carotid artery (ECA) in FSI model due to the elastic energy stored in the expanding compliant wall. The calculated difference in wall shear stress (WSS) in both Non-FSI and FSI models is a range of between 5 and 11% at the mean WSS. The low WSS corresponds to regions of carotid artery that are more susceptible to atherosclerosis.

Keywords: Carotid artery, Fluid-structure interaction, Hemodynamics, Wall shear stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2867
2316 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: Channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1065
2315 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mold cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process is analyzed by including the effect of pouring velocity as well as natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: Buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2315
2314 The Difficulties Witnessed by People with Intellectual Disability in Transition to Work in Saudi Arabia

Authors: Adel S. Alanazi

Abstract:

The transition of a student with a disability from school to work is the most crucial phase while moving from the stage of adolescence into early adulthood. In this process, young individuals face various difficulties and challenges in order to accomplish the next venture of life successfully. In this respect, this paper aims to examine the challenges encountered by the individuals with intellectual disabilities in transition to work in Saudi Arabia. For this purpose, this study has undertaken a qualitative research-based methodology; wherein interpretivist philosophy has been followed along with inductive approach and exploratory research design. The data for the research has been gathered with the help of semi-structured interviews, whose findings are analysed with the help of thematic analysis. Semi-structured interviews were conducted with parents of persons with intellectual disabilities, officials, supervisors and specialists of two vocational rehabilitation centres providing training to intellectually disabled students, in addition to that, directors of companies and websites in hiring those individuals. The total number of respondents for the interview was 15. The purposive sampling method was used to select the respondents for the interview. This sampling method is a non-probability sampling method which draws respondents from a known population and allows flexibility and suitability in selecting the participants for the study. The findings gathered from the interview revealed that the lack of awareness among their parents regarding the rights of their children who are intellectually disabled; the lack of adequate communication and coordination between various entities; concerns regarding their training and subsequent employment are the key difficulties experienced by the individuals with intellectual disabilities. Training in programmes such as bookbinding, carpentry, computing, agriculture, electricity and telephone exchange operations were involved as key training programmes. The findings of this study also revealed that information technology and media were playing a significant role in smoothing the transition to employment of individuals with intellectual disabilities. Furthermore, religious and cultural attitudes have been identified to be restricted for people with such disabilities in seeking advantages from job opportunities. On the basis of these findings, it can be implied that the information gathered through this study will serve to be highly beneficial for Saudi Arabian schools/ rehabilitation centres for individuals with intellectual disability to facilitate them in overcoming the problems they encounter during the transition to work.

Keywords: Intellectual disability, transition services, rehabilitation centre.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1326
2313 Numerical Investigation of High Attack Angle Flow on 760/450 Double-Delta Wing in Incompressible Flow

Authors: Hesamodin Ebnodin Hamidi, Mojtaba Rahimi

Abstract:

Along with increasing development of generation of supersonic planes especially fighters and request for increasing the performance and maneuverability scientists and engineers suggested the delta and double delta wing design. One of the areas which was necessary to be researched, was the Aerodynamic review of this type of wings in high angles of attack at low speeds that was very important in landing and takeoff the planes and maneuvers. Leading Edges of the wings,cause the separation flow from wing surface and then formation of powerful vortex with high rotational speed which studing the mechanism and location of formation and also the position of the vortex breakdown in high angles of attack is very important. In this research, a double delta wing with 76o/45o sweep angles at high angle of attack in steady state and incompressible flow were numerically analyzed with Fluent software. With analaysis of the numerical results, we arrived the most important characteristic of the double delta wings which is keeping of lift at high angles of attacks.

Keywords: Double delta wing, high angle of attack, vortex breakdown, incompressible flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2572
2312 Investigations of Flow Field with Different Turbulence Models on NREL Phase VI Blade

Authors: T. Y. Liu, C. H Lin., Y. M Ferng

Abstract:

Wind energy is one of the clean renewable energy. However, the low frequency (20-200HZ) noise generated from the wind turbine blades, which bothers the residents, becomes the major problem to be developed. It is useful for predicting the aerodynamic noise by flow field and pressure distribution analysis on the wind turbine blades. Therefore, the main objective of this study is to use different turbulence models to analyze the flow field and pressure distributions of the wing blades.

Three-dimensional Computation Fluid Dynamics (CFD) simulation of the flow field was used to calculate the flow phenomena for the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine rotor. Two different flow cases with different wind speeds were investigated: 7m/s with 72rpm and 15m/s with 72rpm.

Four kinds of RANS-based turbulence models, Standard k-ε, Realizable k-ε, SST k-ω, and v2f, were used to predict and analyze the results in the present work. The results show that the predictions on pressure distributions with SST k-ω and v2f turbulence models have good agreements with experimental data.

Keywords: Horizontal Axis Wind Turbine, turbulence model, noise.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2161
2311 Modeling Strategy and Numerical Validation of the Turbulent Flow over a two-Dimensional Flat Roof

Authors: Marco Raciti Castelli, Alberto Castelli, Ernesto Benini

Abstract:

The construction of a civil structure inside a urban area inevitably modifies the outdoor microclimate at the building site. Wind speed, wind direction, air pollution, driving rain, radiation and daylight are some of the main physical aspects that are subjected to the major changes. The quantitative amount of these modifications depends on the shape, size and orientation of the building and on its interaction with the surrounding environment.The flow field over a flat roof model building has been numerically investigated in order to determine two-dimensional CFD guidelines for the calculation of the turbulent flow over a structure immersed in an atmospheric boundary layer. To this purpose, a complete validation campaign has been performed through a systematic comparison of numerical simulations with wind tunnel experimental data.Several turbulence models and spatial node distributions have been tested for five different vertical positions, respectively from the upstream leading edge to the downstream bottom edge of the analyzed model. Flow field characteristics in the neighborhood of the building model have been numerically investigated, allowing a quantification of the capabilities of the CFD code to predict the flow separation and the extension of the recirculation regions.The proposed calculations have allowed the development of a preliminary procedure to be used as a guidance in selecting the appropriate grid configuration and corresponding turbulence model for the prediction of the flow field over a twodimensional roof architecture dominated by flow separation.

Keywords: CFD, roof, building, wind.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
2310 Analytical Formulae for the Approach Velocity Head Coefficient

Authors: Abdulrahman Abdulrahman

Abstract:

Critical depth meters, such as abroad crested weir, Venture Flume and combined control flume are standard devices for measuring flow in open channels. The discharge relation for these devices cannot be solved directly, but it needs iteration process to account for the approach velocity head. In this paper, analytical solution was developed to calculate the discharge in a combined critical depth-meter namely, a hump combined with lateral contraction in rectangular channel with subcritical approach flow including energy losses. Also analytical formulae were derived for approach velocity head coefficient for different types of critical depth meters. The solution was derived by solving a standard cubic equation considering energy loss on the base of trigonometric identity. The advantage of this technique is to avoid iteration process adopted in measuring flow by these devices. Numerical examples are chosen for demonstration of the proposed solution.

Keywords: Broad crested weir, combined control meter, control structures, critical flow, discharge measurement, flow control, hydraulic engineering, hydraulic structures, open channel flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1028
2309 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: G. M. Ozkan, H. Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0o, 15o, 30o, 45o, 60o) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45oand 60o which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: Bluff body, flow control, permeable plate, PIV, VIV, vortex shedding.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2583
2308 CFD Simulation for Flow Behavior in Boiling Water Reactor Vessel and Upper Pool under Decommissioning Condition

Authors: Y. T. Ku, S. W. Chen, J. R. Wang, C. Shih, Y. F. Chang

Abstract:

In order to respond the policy decision of non-nuclear homes, Tai Power Company (TPC) will provide the decommissioning project of Kuosheng Nuclear power plant (KSNPP) to meet the regulatory requirement in near future. In this study, the computational fluid dynamics (CFD) methodology has been employed to develop a flow prediction model for boiling water reactor (BWR) with upper pool under decommissioning stage. The model can be utilized to investigate the flow behavior as the vessel combined with upper pool and continuity cooling system. At normal operating condition, different parameters are obtained for the full fluid area, including velocity, mass flow, and mixing phenomenon in the reactor pressure vessel (RPV) and upper pool. Through the efforts of the study, an integrated simulation model will be developed for flow field analysis of decommissioning KSNPP under normal operating condition. It can be expected that a basis result for future analysis application of TPC can be provide from this study.

Keywords: CFD, BWR, decommissioning, upper pool.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 755
2307 Kinetic Theory Based CFD Modeling of Particulate Flows in Horizontal Pipes

Authors: Pandaba Patro, Brundaban Patro

Abstract:

The numerical simulation of fully developed gas–solid flow in a horizontal pipe is done using the eulerian-eulerian approach, also known as two fluids modeling as both phases are treated as continuum and inter-penetrating continua. The solid phase stresses are modeled using kinetic theory of granular flow (KTGF). The computed results for velocity profiles and pressure drop are compared with the experimental data. We observe that the convection and diffusion terms in the granular temperature cannot be neglected in gas solid flow simulation along a horizontal pipe. The particle-wall collision and lift also play important role in eulerian modeling. We also investigated the effect of flow parameters like gas velocity, particle properties and particle loading on pressure drop prediction in different pipe diameters. Pressure drop increases with gas velocity and particle loading. The gas velocity has the same effect ((proportional toU2 ) as single phase flow on pressure drop prediction. With respect to particle diameter, pressure drop first increases, reaches a peak and then decreases. The peak is a strong function of pipe bore.

Keywords: CFD, Eulerian modeling, gas solid flow, KTGF.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175
2306 Leakage Reduction ONOFIC Approach for Deep Submicron VLSI Circuits Design

Authors: Vijay Kumar Sharma, Manisha Pattanaik, Balwinder Raj

Abstract:

Minimizations of power dissipation, chip area with higher circuit performance are the necessary and key parameters in deep submicron regime. The leakage current increases sharply in deep submicron regime and directly affected the power dissipation of the logic circuits. In deep submicron region the power dissipation as well as high performance is the crucial concern since increasing importance of portable systems. Number of leakage reduction techniques employed to reduce the leakage current in deep submicron region but they have some trade-off to control the leakage current. ONOFIC approach gives an excellent agreement between power dissipation and propagation delay for designing the efficient CMOS logic circuits. In this article ONOFIC approach is compared with LECTOR technique and output results show that ONOFIC approach significantly reduces the power dissipation and enhance the speed of the logic circuits. The lower power delay product is the big outcome of this approach and makes it an influential leakage reduction technique.

Keywords: Deep submicron, Leakage Current, LECTOR, ONOFIC, Power Delay Product

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2496
2305 Continuous Flow Experimental Set-Up for Fouling Deposit Study

Authors: A. L. Ho, N. Ab. Aziz, F. S. Taip, M. N. Ibrahim

Abstract:

The study of the fouling deposition of pink guava juice (PGJ) is relatively new research compared to milk fouling deposit. In this work, a new experimental set-up was developed to imitate the fouling formation in heat exchanger, namely a continuous flow experimental set-up heat exchanger. The new experimental setup was operated under industrial pasteurization temperature of PGJ, which was at 93°C. While the flow rate and pasteurization period were based on the experimental capacity, which were 0.5 and 1 liter/min for the flow rate and the pasteurization period was set for 1 hour. Characterization of the fouling deposit was determined by using various methods. Microstructure of the deposits was carried out using ESEM. Proximate analyses were performed to determine the composition of moisture, fat, protein, fiber, ash and carbohydrate content. A study on the hardness and stickiness of the fouling deposit was done using a texture analyzer. The presence of seedstone in pink guava juice was also analyzed using a particle analyzer. The findings shown that seedstone from pink guava juice ranging from 168 to 200μm and carbohydrate was found to be a major composition (47.7% of fouling deposit consists of carbohydrate). Comparison between the hardness and stickiness of the deposits at two different flow rates showed that fouling deposits were harder and denser at higher flow rate. Findings from this work provide basis knowledge for further study on fouling and cleaning of PGJ.

Keywords: Pink guava juice, fouling deposit, heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1624
2304 An Efficient Algorithm for Motion Detection Based Facial Expression Recognition using Optical Flow

Authors: Ahmad R. Naghsh-Nilchi, Mohammad Roshanzamir

Abstract:

One of the popular methods for recognition of facial expressions such as happiness, sadness and surprise is based on deformation of facial features. Motion vectors which show these deformations can be specified by the optical flow. In this method, for detecting emotions, the resulted set of motion vectors are compared with standard deformation template that caused by facial expressions. In this paper, a new method is introduced to compute the quantity of likeness in order to make decision based on the importance of obtained vectors from an optical flow approach. For finding the vectors, one of the efficient optical flow method developed by Gautama and VanHulle[17] is used. The suggested method has been examined over Cohn-Kanade AU-Coded Facial Expression Database, one of the most comprehensive collections of test images available. The experimental results show that our method could correctly recognize the facial expressions in 94% of case studies. The results also show that only a few number of image frames (three frames) are sufficient to detect facial expressions with rate of success of about 83.3%. This is a significant improvement over the available methods.

Keywords: Facial expression, Facial features, Optical flow, Motion vectors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2376
2303 Comparison of Newton Raphson and Gauss Seidel Methods for Power Flow Analysis

Authors: H. Abaali, T. Talbi, R.Skouri

Abstract:

This paper presents a comparative study of the Gauss Seidel and Newton-Raphson polar coordinates methods for power flow analysis. The effectiveness of these methods are evaluated and tested through a different IEEE bus test system on the basis of number of iteration, computational time, tolerance value and convergence.

Keywords: Convergence time, Gauss-Seidel Method, Newton-Raphson Method, number of iteration, power flow analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2542
2302 A Procedure to Assess Streamflow Rating Curves and Streamflow Sequences

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study aims to provide sub-hourly streamflow predictions and associated rating curves for small catchments of intermittent and torrential flow regime characterized by flash floods occurring especially during April and November. The methodology entails two lumped conceptual hydrological models which work in series. The total model is based upon eleven parameters and shows good flexibility in handling different input sets. Runoff Coefficient has contributed to improving the model’s performances and has been treated as an additional parameter; while Sensitivity Analysis has highlighted how slight changes in the model’s input can lead to changes in model’s output. The adopted procedure is steady and useful to give very practical engineering information at the expense of a parsimonious request both in input data and in the number of adopted parameters. According to the obtained results, the authors encourage the test of this combined procedure on different hydrological scenarios in order to provide information for poorly monitored catchments and not updated sites.

Keywords: Streamflow rating curve, chronological data, streamflow sequences, conceptual models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 420
2301 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility

Authors: Prateek Kishore, T. M. Muruganandam

Abstract:

Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.

Keywords: Method of characteristics, Nozzle, supersonic wind tunnel, variable Mach number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1031
2300 European Ecological Network Natura 2000 - Opportunities and Threats

Authors: Adam Niewiadomski

Abstract:

The research objective of the project and article “European Ecological Network Natura 2000 – opportunities and threats” Natura 2000 sites constitute a form of environmental protection, several legal problems are likely to result. Most controversially, certain sites will be subject to two regimes of protection: as national parks and as Natura 2000 sites. This dualism of the legal regulation makes it difficult to perform certain legal obligations related to the regimes envisaged under each form of environmental protection. Which regime and which obligations resulting from the particular form of environmental protection have priority and should prevail? What should be done if these obligations are contradictory? Furthermore, an institutional problem consists in that no public administration authority has the power to resolve legal conflicts concerning the application of a particular regime on a given site. There are also no criteria to decide priority and superiority of one form of environmental protection over the other. Which regulations are more important, those that pertain to national parks or to Natura 2000 sites? In the light of the current regulations, it is impossible to give a decisive answer to these questions. The internal hierarchy of forms of environmental protection has not been determined, and all such forms should be treated equally.

Keywords: Natura 2000, European Ecological Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2299 Investigation on Fluid Flow Characteristics of the Orifice in Nuclear Power Plant

Authors: Nam-Seok Kim, Sang-Kyu Lee, Byung-Soo Shin, O-Hyun Keum

Abstract:

The present paper represents a methodology for investigating flow characteristics near orifice plate by using a commercial computational fluid dynamics code. The flow characteristics near orifice plate which is located in the auxiliary feedwater system were modeled via three different levels of grid and four different types of Reynolds Averaged Navier-Stokes (RANS) equations with proper near-wall treatment. The results from CFD code were compared with experimental data in terms of differential pressure through the orifice plate. In this preliminary study, the Realizable k-ε and the Reynolds stress models with enhanced wall treatment were suitable to analyze flow characteristics near orifice plate, and the results had a good agreement with experimental data.

Keywords: Auxiliary Feedwater, Computational Fluid Dynamics, Orifice, Nuclear Power Plant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
2298 Effects of Injection Velocity and Entrance Airflow Velocity on Droplets Sizing in a Duct

Authors: M. M. Doustdar , M. Mojtahedpoor

Abstract:

This paper addresses one important aspect of combustion system analysis, the spray evaporation and dispersion modeling. In this study we assume an empty cylinder which is as a simulator for a ramjet engine and the cylinder has been studied by cold flow. Four nozzles have the duties of injection which are located in the entrance of cylinder. The air flow comes into the cylinder from one side and injection operation will be done. By changing injection velocity and entrance air flow velocity, we have studied droplet sizing and efficient mass fraction of fuel vapor near and at the exit area. We named the mass of fuel vapor inside the flammability limit as the efficient mass fraction. Further, we decreased the initial temperature of fuel droplets and we have repeated the investigating again. To fulfill the calculation we used a modified version of KIVA-3V.

Keywords: Ramjet, droplet sizing, injection velocity, air flow velocity, efficient mass fraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
2297 On the Numerical Simulation of Flow Past an Oscillating Circular Cylinder in a Circular Path: Oscillation Amplitude Effect

Authors: Qasem M. Al-Mdallal

Abstract:

This paper presents results obtained from the numerical solution for the flow past an oscillating circular cylinder at Reynolds number of 200. The frequency of oscillation was fixed to the vortex shedding frequency from a fixed cylinder, f0, while the amplitudes of oscillations were varied from to 1.1a, where a represents the radius of the cylinder. The response of the flow through the fluid forces acting on the surface of the cylinder are investigated. The lock-on phenomenon is captured at low oscillation amplitudes.

Keywords: Lock-on; streamwise oscillation; transverse oscillation; fluid forces, combined motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1693
2296 The Comparative Analysis of Two Typical Fluidic Thrust Vectoring Exhaust Nozzles on Aerodynamic Characteristics

Authors: Xin H. Zou, Qiang Wang

Abstract:

The comparisons of two typical fluidic thrust vectoring exhaust nozzles including two-dimensional(2-D) nozzle and axisymmetric nozzle on aerodynamic characteristics was presented by numerical simulation. The results show: the thrust vector angles increased with the increasing secondary flow but decreased with the nozzle pressure ratio (NPR) increasing. With the same secondary flow and NPR, the thrust vector angles of 2-D nozzle were higher than the axisymmetric nozzle-s. So with the lower NPR and more secondary weight flow, the much higher thrust vector angle was caused by 2-D fluidic nozzle. And with the higher NPR and less secondary weight flow, there was not much difference in angular dimension between two nozzles.

Keywords: Aerodynamic characteristics, fluidic nozzle, vector angle, thrust coefficient comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
2295 Compressible Flow Modeling in Pipes and Porous Media during Blowdown Experiment

Authors: Thomas Paris, Vincent Bruyere, Patrick Namy

Abstract:

A numerical model is developed to simulate gas blowdowns through a thin tube and a filter (porous media), separating a high pressure gas filled reservoir to low pressure ones. Based on a previous work, a one-dimensional approach is developed by using the finite element method to solve the transient compressible flow and to predict the pressure and temperature evolution in space and time. Mass, momentum, and energy conservation equations are solved in a fully coupled way in the reservoirs, the pipes and the porous media. Numerical results, such as pressure and temperature evolutions, are firstly compared with experimental data to validate the model for different configurations. Couplings between porous media and pipe flow are then validated by checking mass balance. The influence of the porous media and the nature of the gas is then studied for different initial high pressure values.

Keywords: Fluid mechanics, compressible flow, heat transfer, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1141
2294 Heat Transfer to Laminar Flow over a Double Backward-Facing Step

Authors: Hussein Togun, Tuqa Abdulrazzaq, S. N. Kazi, A. Badarudin, M. K. A. Ariffin

Abstract:

Heat transfer and laminar air flow over a double backward-facing step numerically studied in this paper. The simulations was performed by using ANSYS ICEM for meshing process and using ANSYS fluent 14 (CFD) for solving. The k-ɛ standard model adopted with Reynolds number varied between 98.5 to 512 and three step height at constant heat flux (q=2000 W/m2). The top of wall and bottom of upstream are insulated with bottom of downstream is heated. The results show increase in Nusselt number with increases of Reynolds number for all cases and the maximum of Nusselt number happens at the first step in compared to the second step. Due to increase of cross section area of downstream to generate sudden expansion then Nusselt number decrease but the profile of Nusselt number keep same trend for all cases where increase after the first and second steps. Recirculation region after the first and second steps are denoted by contour of streamline velocity. The higher augmentation of heat transfer rate observed for case 1 at Reynolds number of 512 and heat flux q=2000 W/m2.

Keywords: Laminar flow, Double backward, Separation flow, Recirculation flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3507
2293 Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

Authors: Kyoungjin Kim

Abstract:

Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while the temperature dependent viscosity of liquid coating resin plays an important role in the resin flow. It is found that the severe viscous heating near the coating die wall profoundly alters the radial velocity profiles and that the increase of final coating thickness by die pressurization is amplified if viscous heating is present.

Keywords: Optical fiber manufacturing, Optical fiber coating, Capillary flow, Viscous heating, Flow simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3133
2292 Visualized Flow Patterns around and inside a Two-Sided Wind-Catcher in the Presence of Upstream Structures

Authors: M. Afshin, A. Sohankar, M. Dehghan Manshadi, M. R. Daneshgar, G. R. Dehghan Kamaragi

Abstract:

In this paper, the influence of upstream structures on the flow patternaround and inside the wind-catcher is experimentally investigated by smoke flow visualization techniques. Wind-catchers are an important part of natural ventilation in residential buildings or public places such as shopping centers, libraries, etc. Wind-catchers might be also used in places of high urban densities; hence their potential to provide natural ventilation is dependent on the presence of upstream structures. In this study, the two-sided wind-catcher model was based on a real wind-catcher observed in the city of Yazd, Iran. The present study focuses on the flow patterns around and inside the isolated two-sided wind-catcher, and on a two-sided wind-catcher in the presence of an upstream structure. The results show that the presence of an upstream structure influences the airflow pattern force and direction. Placing a high upstream structure reverses the airflow direction inside the wind-catcher.

Keywords: Natural Ventilation, Smoke Flow Visualization, Two-Sided Wind-Catcher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2291 A POX Controller Module to Prepare a List of Flow Header Information Extracted from SDN Traffic

Authors: Wisam H. Muragaa, Kamaruzzaman Seman, Mohd Fadzli Marhusin

Abstract:

Software Defined Networking (SDN) is a paradigm designed to facilitate the way of controlling the network dynamically and with more agility. Network traffic is a set of flows, each of which contains a set of packets. In SDN, a matching process is performed on every packet coming to the network in the SDN switch. Only the headers of the new packets will be forwarded to the SDN controller. In terminology, the flow header fields are called tuples. Basically, these tuples are 5-tuple: the source and destination IP addresses, source and destination ports, and protocol number. This flow information is used to provide an overview of the network traffic. Our module is meant to extract this 5-tuple with the packets and flows numbers and show them as a list. Therefore, this list can be used as a first step in the way of detecting the DDoS attack. Thus, this module can be considered as the beginning stage of any flow-based DDoS detection method.

Keywords: Matching, OpenFlow tables, POX controller, SDN, table-miss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224