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Statistical description of the four-state Markovaith

Abstract—In this work, a characterization and modeling ofassuming time-homogeneity, is presented. Theotgti@eket

packet loss of a Voice over Internet Protocol (\JatBmmunication
is developed. The distributions of the number ofsazutive received
and lost packets (namely gap and burst) are modieed the

transition probabilities of two-state and four-statmodel.

Measurements show that both models describe addguhe burst
distribution, but the decay of gap distribution fosn-homogeneous
losses is better fit by the four-state model. Thespective
probabilities of transition between states for eavbdel were

estimated with a proposed algorithm from a set ohitored VolP

calls in order to obtain representative minimum,ximam and

average values for both models.

receipt and loss rates are quantified. Respectipdength and
burst length (measured in number of packets lastived)
distributions are also described and a comparispmeans of
the square root of the mean squared error (SMSE) of gap and
burst length distributions, of two-state and fotats models is
also performed.

Il. MARKOV CHAINS

LetS =S5,,S,,...,S, be them states of an m-state Markov
chain and lep;; be the probability of the chain to pass from

Keywords—Packet loss, gap and burst distribution, Markothe states; to the states;, i.e.,p;; = P(X; = x;|X;-1 = x;_1).

chain, VolP measurements.

|I. INTRODUCTION

N this work, modeling of a/oice over Internet Protocol

(VolP) communication through a wide area networkA(NY
is developed and simulation based on this modetiformed.
The effects of correlated delay and loss in theusege of

packets on a voice communication are studied. AnR(X, ., = x,.1|X, = %) = P(Xy, = %p|Xpoq = Xp_1).

Having the Markov property means that, given thespnt
state, future states are independent of the pastssti.e.,
P(Xn41 = Xpi1|Xn = Xn, Xnoq = Xpq, ) =

P(X,41 = xn411X, = x,). The Markov chains used in this
work also are time-homogeneous, which means that th
probabilities of transition between states are tzorsover
time,i.e.,

All

parameters of the proposed models are obtained fraftates communicate (are reachable from) each oittgch

measurements of these VolIP calls.

Consecutive packet receipts and losses are nanpedagal
bursts, respectively[1]. Due to the time-correlatetupancy
of the network, packet losses commonly occur instsurAt
small time scales, i.e., a few seconds or minuiessts occur
with approximately the same distribution, and a -stete

makes the chain irreducible. Also, the chain isrigpl, i.e.,
stateS; can be reached from itself in any number of steps
n=123,..).

The probabilities of transitions between states d¢@n
represented by &ransition matrix. The elements of the one-
stepm x m transition matrixI’ areT;; = p;;. To obtain then-

Markov chain can reproduce this phenomenon. NORgep transition matrix it is necessary to multiphe matrix

homogeneous bursty behavior becomes noticeablargerl
scales and in this case the two-state Markov chain
insufficient, thus a more general model is necgsddre four-

state Markov chain is applied then in order to eept(or

simulate) the widely known bursty,
behavior of the characteristics of network traffi€his

approach allows us to represent and simulate tipeseds
with low and high loss rate that alternate in segee
according to certain probability.

The knowledge of the packet loss rate (PLR) andstbur

length distribution is useful to quantify the qtpliof the
communication in the sense of certain metrics,, emgean
opinion score (MOS).
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itselfn times[2], i.e.,

T,=T" (1)

As the number of stepsi) increases, the probability of
transition to the stat& depends less of the initial state. i.e., as
n tends toco, the matrixT,, converges to a matrix with the
next form:

S1 S2 Sm
S S e S
T,=limT, =, 7 . 7 ()
n—oo . . . .
S1 Sz Sm
such that

S+s,++s5, =1

®)
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In (3), s; represents the nametitady probability of states;.
The steady-state transition matfix can be obtained then by
solving (3) and (4Error! Reference source not found]:

[S1 sz Sm]T =[S1 Sz Sm] 4)

Assuming that the chain is irreducible and apedpthe
Matrix T, is defined and unique.

I1l.  TwoO- AND FOUR-STATE MODELS

The two-state Markov chain is shown in Fig. 1. Stgt
represents packet loss anfl,, packet receipt. Two
substitutions #f,; = 1 — p;, andp,, =1 —p,;) are made in
order to represent the chain with the lowest numbkr
parameters. The steady-state probability of thénctmbe in
the states;, namely the packet loss rate, is given byHBpr!
Reference source not found.

P21

=— 5
P12 + D21 ®)

S1
and clearlys, = 1 —s;.

P21

Fig. 1: Two-state Markov chain. White and shadgles represent
correct and erroneous states, respectively.

The burst length and gap length distributiofis(¥) and
fq(k), respectively) can be expressed in termp;efandp,,,
as expressed by (6) and (7):

fo(k) =p1,(1—py)k?t (6)

fg(k) =p(1— 1921)](_1 (7

which have also respective averagdg, (k)} = 1/p,, and
E{f,;(k)} = 1/p,. It is easy to proof (6), aBp., f»(k) =1
andf, (k + 1) = f, (k) - (1 — p,1); and similarly for (7).

The four-state Markov chain is shown in Fig. 2. $itig
arrows indicate zero probability. Statdg and S; (shady
circles) represent packet losses (erroneafysgndsS, (white
circles), packet receipt (correct).

Six parameters pgi,piz, Paz, P3ar P23 P32 € (0,1)) are
necessary to define all these probabilities. Withimss of
generality, probabilities of transitions betweenreot states,
as well as transitions between erroneous ones, bhaen
assigned to zero.
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Fig. 2: Four-state Markov chain. White and shadgles represent
correct and erroneous states, respectively.

The four steady-state probabilities of this clexie:

1
51:1_,_& P12 " D23 +P12'P23'P34 8)
P21 P21 Paz P21t P32 Pa3
1 )
52 = N
D21 | D23 | P23 " D34
1422l 4228 4 223 Fad
P12 P32 P32 Pas3
. = 1 (20)
3 P34 , P32 | P21 " P32
R =
Pa3z P23 P12 " P23
5 = ! (11)
4 Pa3z | P32 " P43 | P21 " P32 " Pa3
148 4 +
D34 P23 P34 P12 " D23 " P34

The packet loss rate, i.e., the probability of tdhain to
be either inS, orinS;, is then:
r =S5, + 53 (12)
The average burst length)(is calculated as the quotient of
the probability of loss and the probability of ts#tion from a
lossless state to a loss state or vice versa (B)t.. and
t.. be the respective number of transitions from carrec
states to error states and from error states toeciostates.
Their absolute differencdt(_,, — t._.|) is at mostl and it
can be considere@l asn tends tow, i.e., the transitions from
error state to correct state and vice versa havealeq

probability  6,(p21 + P23) + 54(Pa3) = $1(P12) +53(p3a +
Ps2)) and then the average burst lendthi$:

b=
S2(P21 + D23) + 54 (Paz)

(13)

Similarly, the average gap length is:
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S2(D21 + D23) + 54 (Pa3)

g= (14)
The authors ofError! Reference source not found]
derived the gap length distribution for a two-statedel, in
which, as opposite to the two-state of Fig. 1, éssand
receipts are allowed in the two states. The distidin of burst
length of the four-state Markov chain of Fig. 2aostained,
similarly as in Error! Reference source not found], as

follows:

Let f, (k) denote the probability that the burst lengttkis
C,(k), the probability that the burst lengthkisor greater and
the k" transmission is from stag andC;(b), the probability
that the burst length i& or greater and®"* transmission is

from stateS; andC, (k), the probability that the burst length is

k or greater such that, (k) = C; (k) + C;(k) and f, (k) =
C,(k) — Cy(k +1). Clearly C,(k) =27, fp (D). Also, as
transitions between states and S; have zero probability,
Cilk+1) = C(k) - (1 = prz) = C(D) - (1 = pr)" and
C3(k+1) = Cs(k) - (1 —p3s —P3z) = C3(1) - (1 — p3g —
p32)¥. Then to calculate, (k) it is necessary to obtaify (1)
and C;(1), whose respective values ar€ (1) =s,-
P21/[52(P21 + P23) + 54 - Paz] and C5(1) = (s; P2z + 54
P43)/[S2(P21 + P23) + S4 - Pas]

As the minimum burst length id, C,(1) =, (1) +
C;(1) = 1. Then, the distribution of the burst length is:

folk) = €1(1) - Q1(k) + C5(1) - Q3 (k) (15)

where Qi(k) = (1 =p)* ' = (1 =p12) = piz-
(1—pp)*t and Q3 (k) = (1 — p3s — p32) ™t =
(1= p3s — P32)" = (P32 + P32) - (1 — P3s — p32)* " As

expressed by (15);,(k) is the sum of two geometric series

with respective rate$ — p;, and1 — p;, — ps,; this implies
that f, (k) is a decreasing function df, i.e., greater bursts
have lower probabilities than shorter ones.

A similar procedure can be followed to obtain thapg
length distribution £, (k)), which is:

steady-state solution, and [gfl;, ;); i = 1, ..., m} be its pairs
of eigenvalues and eigenvectors (iBy; = A;7;), such that
A; > A; for i <j. This matrixT can be decomposed into the
special form

T =PDP!

17)

whereP is a matrix composed of the eigenvector§ ab is
the diagonal matrix constructed from the correspund
eigenvalues and™! is the inverse ofP. ThenT, can be
calculated easily as

L3

=PD"P"}

(18)

As all elements of the diagonal of the matkixare lower
than1 exceptD, 1, then

T, =P

*P~'=PDP (19)
where the only non-zero elementfis D;; = 1.
This method is also useful when obtaining shorater
approximations, i.eT,, for smalln.

V. MODELING LOSSSEQUENCES

The traces studied in this work are those corredipgnto
Sets 3 and 4, described inError! Reference source not
found.] andError! Reference source not found]. There are
48 traces in total. Each one represents the packetpteand
loss of anl-hour VolIP call.

An empirical algorithm is used to estimate the paeters of

the Markov chain. For the two state Markov modelYlebe
the sequence that represent packet receipts asdsloge.,

Y, = 0 if packett was received and, =1 if it was lost.
Packets are sent with a constant rate, e.g., apackent each
20ms.

A. Two-state Case

In this case the values ¢@f, andp,, are estimated as

follows: p1, = t.L./ny andp,, = t../ny. Wheret._, and

fa(k) = C(1) - Q2(k) + C4(1) - Qu(k) (16) ¢, are the respective number of transitions from exirr
states to error states and from error states tecostates, and
Where Co(1) = (51 P12+ 53 P32)/[s1° P12 +S3+  n, andn, are the respective number of received and lost

(P32 + P34)], Co(1) = (53 p3a)/[51 P12 +53- (P32 +
P3a)l,  Qa(k) = (1= p2s = p23)* ' = (1 = ppy — pp3)* =
(P21 +P23) * (1 = poy — p23)*™! and Q) =(1-
Pa3) ™t = (1 = paz)® = paz - (1 = ps3)*~". Also note that
C,(1) + C,(1) = 1.

packets.

B. Four-state Case:

In this case the values of the sequeHcare divided into
regions of two types: the first with lower lossedthose first
and last values are zeros) and the second witkehighks rate
(whose first and last values are ones) than cettagshold,
e.g., 1%. Then, from the first regionp,, and p,; are
estimated the same way than in a two-state modeilzgly,

P43 andps, are estimated from the second region. Finally, let
tist-ona D€ the number of transitions from the first region
the second;tynq-15:, the number of transitions from the
second to the firsty, ., the number of received packets in the
first region (zeros) and,, 4, the number of lost packets in the

IV. NUMERICAL APPROXIMATION OF THEMATRIX OF
PROBABILITIES

Obtaining analytical expressions for the elemehB di.e.,
S1, S5...) can be difficult when the number of states igéa In
this case, a numerical approximation is more sldtathich is
described as follows:

Let T be am x m transition matrix, which has a unique
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second region (ones), them; = tisioona/Mise and ps, =

values (near zero), but in the case of the gap theng

tona—1st/M2na- AlSO, the burst and gap histograms can bdistribution, which presents slower decay, the state model

obtained from the sequenke
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< 0.50

* 0.40
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0.20
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k

M measured —two-state -e-four-state

Fig. 3: Burst length distribution of a VolP commecation. Two-state
and four-state models represent it adequately

0.07
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. 0.04

=

+°0.03
0.02
0.01

0.00

Mmeasured —two-state -+-four-state

Fig. 4: Gap length distribution of a VolP communica. Four-state
model fits better this distribution than two-statedel

VI. COMPARISON OFTWO- AND FOUR-STATE MODELS

An example with one of the traces measured, obdafirgen

a VolP communication with codec G.711 and samptinge
of 20ms, is shown in Fig. 3 and Fig. 4.

1.02

0.98

0.94

Burst CDF

0.9

0.86

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02
Burst CDF (reference)
=——measured =--two-state —four-state
Fig. 5: PP-plot of the respective two-state and-&iate burst
histograms
In the traces under study it is found that, althotiie two-
state model is adequate for the burst length Higion (see
Fig. 5), the four-state model performs better whardeling
the gap length distribution, as shown in Fig. 6isTil because
the burst length distribution approaches rapidlyéoy low

does not fit the measured distribution due to ts-fiexible
one-parameter formula (see (7)).

For each trace that represents a loss sequence, the
parameters of both two-state and four-state modeks
obtained.

The estimated statistics of the two-state and $&bare
transition probabilities are shown, respectivety;Table | and
Table Il.

1.00
0.80
& 0.60
o
o
& 040
0.20
0.00
0 0.2 0.4 0.6 0.8 1
Gap CDF (reference)
——measured --two-state —four-state

Fig. 6: PP-plot of the respective two-state and-&iate gap

histograms
TABLE |
STATISTICS FOR TWO-STATE MODEL
P21 P12
MIN 0.000322 0.595744
MAX 0.038605 0.934703
MEAN 0.013923 0.852838
STD. DEV. 0.012234 0.074697
TABLE Il
STATISTICS FOR FOUR-STATE MODEL
P21 P12 | Pa3 P3a P23 P32

MIN 0.0001840.9636360.0155030.0967740.0000160.00089(

MAX 0.0020531.0000000.2727270.9314640.0025510.361111
MEAN [0.0007930.9989970.05421%0.6887470.0006020.092536

STD. DEV. |0.0005270.0054240.0370930.2598450.0006090.10631%

Fig. 7 and Fig. 8 show the SMSE between the bersjth
and gap length distributions and their respective-state and
four-state models. The four-state model fits thstriiution
better than two-state model for most traces. Iresashere
SMSE is large (e.g., greater theu®01 for the four-state gap
length distribution of Fig. 8) the packet lossasvl(e.g., lower
than 0.23%), then the gap length distribution cannot be
adequately sampled, a larger number of samplesdsssary
in these cases. Note that each one of these treygessents an
1-hour call. In shorter periods, where non-burstysks are
present, these can be modeled adequately by tusstzdel.

VIl. CONCLUSION

In this work, packet receipt and loss are modeledibcrete
finite-state Markov chains. The packet loss rasekpt receipt
rate and the distributions of burst length and amth are
described in terms of the Markov chain parametegs, the
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probabilities of transition between states. Alduris for
estimating the probabilities of transition for batho-state and
four-state models, which are shown in Fig. 1 angl B are
presented.
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0.10
0.08
0.06

SMSE

N

0.04
0% Vrpsomnts”
0.00 T

1

11 21

31 41

Trace

—two-state -e-four-state

o SANFNLS rrsrarren

0.004
0.003
0.002
0.001
0.000

SMSE

11 21 31 41

Trace

—two-state -s-four-state

Fig. 7: SMSE of two-state and four-state burstdgsim for all traces

Fig. 8: SMSE of two-state and four-state gap histogfor all traces

For modeling bursts and gaps of short communicsfiery.

calls with a duration of a few minutes, the twotstanodel is
sufficient; but for longer periods, the four-statemdel fits
better. The performance of both models was evaluate

means of the SMSE of the burst length and gap tengt

distributions, showing that although the two-statedel fits
adequately the burst length distribution, it canfuiiow the

slow decay of the gap length distribution of meaments.
The traces for which the SMSE of the four-state ehodas

higher (e.g., greater than001) had very low loss rates (less
than0.23%), so the gap length distribution was not adeqyatel
sampled.
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