
 

 

  
Abstract—This paper presents results obtained from the 

numerical solution for the flow past an oscillating circular cylinder at 
Reynolds number of 200. The frequency of oscillation was fixed to 
the vortex shedding frequency from a fixed cylinder, f�, while the 
amplitudes of oscillations were varied from  to 1.1a, where  
represents the radius of the cylinder. The response of the flow 
through the fluid forces acting on the surface of the cylinder are 
investigated. The lock-on phenomenon is captured at low oscillation 
amplitudes. 
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I. INTRODUCTION 

HE Phenomenon of vortex-shedding from an oscillating 
bluff body has been the subject of study Since the last 

century. In practice, the study of the periodic vortex shedding 
and wake development behind a bluff body leads to better 
understanding of the cause of vortex-induced vibration and its 
subsequent suppression and control. The cases of a cylinder 
performing one-degree of freedom (1-DoF) forced streamwise 
or transverse oscillation are studied extensively by many 
researchers (see the recent works by Al Mdallal [2]; Al 
Mdallal et al. [1]; Barrero-Gil and Fernandez-Arroyo [4]; 
Carmo al et. [5]; Konstantinidis and Liang [9]; Marzouk and 
Nayfeh [10]; Suthon and Dalton [12] and the references 
therein). On the other hand, only few studies were concerned 
with the problem of flow past a circular cylinder with 
combined two-degree of freedom (2-DoF) streamwise and 
transverse oscillation (we may refer the reader to Baranyi [3]; 
Didier and Borges [8]; Stansby and Rainey [11]; Williamson 
et al. [13]). Thus, the primary objective of the present work is 
to give further numerical and physical investigations on the 
modelof flow past a circular cylinder with combined two-
degree of freedom (2-DoF) streamwise and transverse 
oscillation. 

The main objective of this paper is to numerically 
investigate the response of the fluid forces generated by an 
oscillating circular cylinder with combined streamwise and 
transverse oscillations in the presence of uniform stream.The 
cylinder, whose axis coincides with the z-axis, is placed 
horizontally in a cross-stream of an infinite extend where the 
flow of a viscous incompressible fluid of constant velocity U  
past the cylinder in the positive -direction.  
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At dimensional time, 0* =t , the cylinder suddenly starts 
to perform (i) time-dependent streamwise oscillations, and (ii) 
time-dependent transverse oscillations. The two-dimensional 
flow configuration of the physical model is shown in Figure 1. 
Note that the dashed line in Figure 1 represents the circular 
path of the cylinder. The streamwise and transverse cylinder 
displacements are, respectively, expressed by  
 

)2sin()(),2cos()( ********** tfAtYtfAtX ππ ==  

where *f  and *A  are, respectively, the dimensional 

frequency and amplitude of the harmonic motions. Here the 
quantities are non-dimensionalized by adopting the following 

relations: ,/* Uaff =   aAA /*=  and  aUtt /*= .   

 
 

 
Fig. 1 The physical model and coordinate system 

 
This study is concerned in analysing the surface fluid forces at  

0977.0,200 0 === ffR  and .1.10 ≤≤ A  

II. COMPUTATIONAL FLOW MODEL 

A frame of reference is used in which the axes translate and 
oscillate with the cylinder. Modified polar coordinates ),( θξ
, with the origin at the centre of the cylinder, are used. Here 

)/ln()ln( * arr ==ξ , where r  is the dimensionless radial 

coordinate. The equations of motion can be written in terms of 
the vorticity (ζ ) and the stream function (ψ ) in 

dimensionless form as  
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          (I)              (II)                                    (III) 

Fig. 2  (I): —, the time variation of )(tCL ; � � �, streamwise cylinder displacement, )(tX ; ….., transverse cylinder displacement, )(tY

, (II): the Lissajous patterns (LC  versus X ), and (III): the Lissajous patterns (LC  versus Y ) for combined (2-DoF) streamwise and 

transverse oscillation case when 0.1/:200 0 == ffR  : (a) 3.0=A , (b) 5.0=A , (c) 7.0=A , (d) 9.0=A , (e) 1.1=A
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The boundary conditions for ψ  and ζ  are based on the 

no-slip and impermeability conditions on the cylinder and the 
free stream condition away from it. These conditions are 
utilized to deduce sets of global conditions, termed integral 
conditions, on ζ  by applying one of the Green’s identities to 

the domain of the field of flow, for more details see Dennis 
and Chang  [6,7]. Further, all flow variables must be periodic 
functions of the angular coordinate  with period 2π, i.e.  

( ) ( 2 ) ( ) ( 2 )t t t tζ ξ θ ζ ξ θ π ψ ξ θ ψ ξ θ π, , = , + , , , , = , + , .  
The method of analysis is based on the solutions of the 
unsteady Navier-Stokes equations (2) and (3) by means of 
Fourier analysis and finite difference method. Note that Since 
the computational domain along the spatial,ξ , direction is 

unbounded, we choose a large enough artificial outer 

boundary, ∞ξ , for the numerical treatment. The solutions for 

both the vorticity and stream function components are 
combined together by incorporating the Gauss-Seidel iterative 
method to obtain a consistent solution for the system. For 
further details about the numerical algorithm the reader is 
referred to the recent work of Al Mdallal et al. [1] and the 
references therein.  

The simulations are carried out by using the time step 
Δt��
 � 10�� for the first 100 steps, then was increased to 

Δt��
 � 10�� for the next 100 steps and finally Δt��
 �

10�� for the rest of the calculations. The number of points in 

the  direction is taken as 319 with a grid size of Δz �

0.025. The maximum number of terms in the Fourier series is 
taken as N � 60 for all cases considered in this paper. 

III.  NUMERICAL SIMULATION RESULTS 

The full set of results for the cases of  

0.45.0/:200 0 −== ffR   when  1.10 ≤≤ A  will be 

reported elsewhere, but here we concentrate and analyze only 

for the cases when 0.1/ 0 =ff . It is well-known that the 

lock-on phenomenon in the case of a cylinder performing a 
streamwise-only (1-DoF) oscillation occurs when the 
oscillation frequency is near twice the natural shedding,

02 ff ≈ . However, it occurs when the oscillation frequency 

is near he natural shedding 0ff ≈ , in the case of a cylinder 

performing a transverse-only (1-DoF) oscillation. In this 
discussion, we analyzed the lock-on phenomenon via 
Lissajous patterns of the lift coefficient.  

The time history of the fluctuating lift coefficients up to 
non-dimensional time 140=t  and the corresponding 

Lissajous patterns (i.e. LC  versus X  and LC  versus Y ) are 

shown in Figure 2 for the case of combined (2-DoF) 
streamwise and transverse oscillation at 

0.1/:200 0 == ffR ,  and 1.13.0 ≤≤ A . It is clear 

that the cylinder excitation in all cases except 3.0=A  
produces a non-repetitive signature of the lift coefficient 
which is also suggested by the corresponding Lissajous 
patterns. These observations suggest that the vortex shedding 

in the near-wake region is almost ”but not full” periodic 
behavior flow values of oscillation amplitudes, i.e. 3.0≤A .  

Table I shows the predicted values of the maximum lift 

coefficient, max,LC , the RMS lift coefficient, rmsLC , , the 

maximum drag coefficient, max,DC , the minimum drag 

coefficient, min,DC , the RMS drag coefficient, rmsDC , , and 

the mean drag coefficient, DC , for the case of combined (2-

DoF) streamwise and transverse oscillation at 

0.1/,200 0 == ffR , and 1.13.0 ≤≤ A . These 

quantities are calculated over four periods of cylinder 
oscillation for TtT 136 ≤≤ , where 24.10/1 ≈= fT . 

Obviously, the quantities max,LC , rmsLC ,  and max,DC , in 

general, are increasing as the amplitude of oscillation, A , 

increases. However, we notice that the values of max,DC  and 

rmsDC ,  are only increasing in the interval ]9.0,3.0[∈A . 

Finally,  min,DC  is decreasing as A  increases.   
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